Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation

Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2022-01, Vol.127 (1), p.n/a
Hauptverfasser: Moran, Sarah E., Hörst, Sarah M., He, Chao, Radke, Michael J., Sebree, Joshua A., Izenberg, Noam R., Vuitton, Véronique, Flandinet, Laurène, Orthous‐Daunay, François‐Régis, Wolters, Cédric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Journal of geophysical research. Planets
container_volume 127
creator Moran, Sarah E.
Hörst, Sarah M.
He, Chao
Radke, Michael J.
Sebree, Joshua A.
Izenberg, Noam R.
Vuitton, Véronique
Flandinet, Laurène
Orthous‐Daunay, François‐Régis
Wolters, Cédric
description Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near‐infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton's tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen‐rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen‐ and nitrogen‐rich haze materials. These Triton haze analogs have clear observable signatures in their near‐infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies. Plain Language Summary Triton is the largest moon of the outer planet Neptune. It has a very thin atmosphere made of similar gases to the atmospheres of the dwarf planet Pluto and Saturn's moon Titan. Sunlight or high energy particles can break apart the molecules that make up these gases, which can then react to form solid particles, called hazes. We made haze particles in an atmospheric chamber under Triton‐like temperature (90 K) and atmospheric composition (small amounts of carbon monoxide and methane in molecular nitrogen), and then measured the chemical and physical properties of the resulting material. We compare our results to similar measurements of laboratory materials made for Pluto and Titan. Our results show larger oxygen and nitrogen contents for these Triton particles, suggesting that increasing carbon monoxide in the atmosphere changes the chemistry of hazes. Within the laboratory hazes, we see signatures of molecular bonds containing oxygen in the near‐infrared, which might be useful for identifying these species with future observations of or missions to Trit
doi_str_mv 10.1029/2021JE006984
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03559249v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622983255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-981276bddf8e7854d6cef06454fc71337afbae99666e50825135c82883b421313</originalsourceid><addsrcrecordid>eNp90N9LwzAQB_AgCo65N_-Agm9i9ZI0aeLbHPvhmAhjPoe0TV1G18xkm86_3kqn-OS93HF8OLgvQpcYbjEQeUeA4OkQgEuRnKAOwVzGEgOc_swg03PUC2EFTYlmhWkHPSy83bo6muhPE_VrXbnXcB8tliaau8pErowG2mcNeHK1-7CFiewRj5xf66119QU6K3UVTO_Yu-hlNFwMJvHsefw46M_inAqAWApMUp4VRSlMKlhS8NyUwBOWlHmKKU11mWkjJefcMBCEYcpyQYSgWUIwxbSLrtu7S12pjbdr7Q_Kaasm_ZmyddgpoIxJksg9afBVizfeve1M2KqV2_nmv6AIJ0QKShhr1E2rcu9C8Kb8vYtBfaeq_qbacNryd1uZw79WTcfzIcECA_0C5Et0FA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622983255</pqid></control><display><type>article</type><title>Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Moran, Sarah E. ; Hörst, Sarah M. ; He, Chao ; Radke, Michael J. ; Sebree, Joshua A. ; Izenberg, Noam R. ; Vuitton, Véronique ; Flandinet, Laurène ; Orthous‐Daunay, François‐Régis ; Wolters, Cédric</creator><creatorcontrib>Moran, Sarah E. ; Hörst, Sarah M. ; He, Chao ; Radke, Michael J. ; Sebree, Joshua A. ; Izenberg, Noam R. ; Vuitton, Véronique ; Flandinet, Laurène ; Orthous‐Daunay, François‐Régis ; Wolters, Cédric</creatorcontrib><description>Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near‐infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton's tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen‐rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen‐ and nitrogen‐rich haze materials. These Triton haze analogs have clear observable signatures in their near‐infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies. Plain Language Summary Triton is the largest moon of the outer planet Neptune. It has a very thin atmosphere made of similar gases to the atmospheres of the dwarf planet Pluto and Saturn's moon Titan. Sunlight or high energy particles can break apart the molecules that make up these gases, which can then react to form solid particles, called hazes. We made haze particles in an atmospheric chamber under Triton‐like temperature (90 K) and atmospheric composition (small amounts of carbon monoxide and methane in molecular nitrogen), and then measured the chemical and physical properties of the resulting material. We compare our results to similar measurements of laboratory materials made for Pluto and Titan. Our results show larger oxygen and nitrogen contents for these Triton particles, suggesting that increasing carbon monoxide in the atmosphere changes the chemistry of hazes. Within the laboratory hazes, we see signatures of molecular bonds containing oxygen in the near‐infrared, which might be useful for identifying these species with future observations of or missions to Triton. Key Points Multiple solar system bodies have complex photochemical hazes which derive from their nitrogen and carbon‐rich atmospheres We generate and measure the properties of analog hazes (“tholin”) specific to Triton‐like composition and temperature Despite other similarities, Triton tholin are much more strongly oxygenated and slightly more nitrogenated than Titan and Pluto tholin</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2021JE006984</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Analogs ; Astrochemistry ; Atmosphere ; Atmospheric chemistry ; Atmospheric composition ; Atmospheric methane ; Carbon monoxide ; Chambers ; Chemical bonds ; Chemical composition ; Chemical properties ; Dwarf planets ; Fourier transforms ; Gases ; Haze ; Haze particles ; Infrared signatures ; Infrared spectra ; infrared spectroscopy ; Laboratories ; laboratory ; Mass spectrometry ; Methane ; Mixing ratio ; Moon ; Moons ; Near infrared radiation ; Nitrogen ; Oxygen ; Photochemistry ; Physical properties ; Planets ; Pluto ; Pluto (dwarf planet) ; Reflectance ; Saturn ; Saturn satellites ; Sciences of the Universe ; Solar system ; Space missions ; Spectroscopy ; Sunlight ; tholin ; Titan ; Triton</subject><ispartof>Journal of geophysical research. Planets, 2022-01, Vol.127 (1), p.n/a</ispartof><rights>2022 The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-981276bddf8e7854d6cef06454fc71337afbae99666e50825135c82883b421313</citedby><cites>FETCH-LOGICAL-c3800-981276bddf8e7854d6cef06454fc71337afbae99666e50825135c82883b421313</cites><orcidid>0000-0002-4072-181X ; 0000-0002-9710-4740 ; 0000-0003-1629-6478 ; 0000-0002-6694-0965 ; 0000-0002-6721-3284 ; 0000-0003-4596-0702 ; 0000-0001-7273-1898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JE006984$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JE006984$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03559249$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moran, Sarah E.</creatorcontrib><creatorcontrib>Hörst, Sarah M.</creatorcontrib><creatorcontrib>He, Chao</creatorcontrib><creatorcontrib>Radke, Michael J.</creatorcontrib><creatorcontrib>Sebree, Joshua A.</creatorcontrib><creatorcontrib>Izenberg, Noam R.</creatorcontrib><creatorcontrib>Vuitton, Véronique</creatorcontrib><creatorcontrib>Flandinet, Laurène</creatorcontrib><creatorcontrib>Orthous‐Daunay, François‐Régis</creatorcontrib><creatorcontrib>Wolters, Cédric</creatorcontrib><title>Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation</title><title>Journal of geophysical research. Planets</title><description>Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near‐infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton's tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen‐rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen‐ and nitrogen‐rich haze materials. These Triton haze analogs have clear observable signatures in their near‐infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies. Plain Language Summary Triton is the largest moon of the outer planet Neptune. It has a very thin atmosphere made of similar gases to the atmospheres of the dwarf planet Pluto and Saturn's moon Titan. Sunlight or high energy particles can break apart the molecules that make up these gases, which can then react to form solid particles, called hazes. We made haze particles in an atmospheric chamber under Triton‐like temperature (90 K) and atmospheric composition (small amounts of carbon monoxide and methane in molecular nitrogen), and then measured the chemical and physical properties of the resulting material. We compare our results to similar measurements of laboratory materials made for Pluto and Titan. Our results show larger oxygen and nitrogen contents for these Triton particles, suggesting that increasing carbon monoxide in the atmosphere changes the chemistry of hazes. Within the laboratory hazes, we see signatures of molecular bonds containing oxygen in the near‐infrared, which might be useful for identifying these species with future observations of or missions to Triton. Key Points Multiple solar system bodies have complex photochemical hazes which derive from their nitrogen and carbon‐rich atmospheres We generate and measure the properties of analog hazes (“tholin”) specific to Triton‐like composition and temperature Despite other similarities, Triton tholin are much more strongly oxygenated and slightly more nitrogenated than Titan and Pluto tholin</description><subject>Analogs</subject><subject>Astrochemistry</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric composition</subject><subject>Atmospheric methane</subject><subject>Carbon monoxide</subject><subject>Chambers</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemical properties</subject><subject>Dwarf planets</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Haze</subject><subject>Haze particles</subject><subject>Infrared signatures</subject><subject>Infrared spectra</subject><subject>infrared spectroscopy</subject><subject>Laboratories</subject><subject>laboratory</subject><subject>Mass spectrometry</subject><subject>Methane</subject><subject>Mixing ratio</subject><subject>Moon</subject><subject>Moons</subject><subject>Near infrared radiation</subject><subject>Nitrogen</subject><subject>Oxygen</subject><subject>Photochemistry</subject><subject>Physical properties</subject><subject>Planets</subject><subject>Pluto</subject><subject>Pluto (dwarf planet)</subject><subject>Reflectance</subject><subject>Saturn</subject><subject>Saturn satellites</subject><subject>Sciences of the Universe</subject><subject>Solar system</subject><subject>Space missions</subject><subject>Spectroscopy</subject><subject>Sunlight</subject><subject>tholin</subject><subject>Titan</subject><subject>Triton</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90N9LwzAQB_AgCo65N_-Agm9i9ZI0aeLbHPvhmAhjPoe0TV1G18xkm86_3kqn-OS93HF8OLgvQpcYbjEQeUeA4OkQgEuRnKAOwVzGEgOc_swg03PUC2EFTYlmhWkHPSy83bo6muhPE_VrXbnXcB8tliaau8pErowG2mcNeHK1-7CFiewRj5xf66119QU6K3UVTO_Yu-hlNFwMJvHsefw46M_inAqAWApMUp4VRSlMKlhS8NyUwBOWlHmKKU11mWkjJefcMBCEYcpyQYSgWUIwxbSLrtu7S12pjbdr7Q_Kaasm_ZmyddgpoIxJksg9afBVizfeve1M2KqV2_nmv6AIJ0QKShhr1E2rcu9C8Kb8vYtBfaeq_qbacNryd1uZw79WTcfzIcECA_0C5Et0FA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Moran, Sarah E.</creator><creator>Hörst, Sarah M.</creator><creator>He, Chao</creator><creator>Radke, Michael J.</creator><creator>Sebree, Joshua A.</creator><creator>Izenberg, Noam R.</creator><creator>Vuitton, Véronique</creator><creator>Flandinet, Laurène</creator><creator>Orthous‐Daunay, François‐Régis</creator><creator>Wolters, Cédric</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4072-181X</orcidid><orcidid>https://orcid.org/0000-0002-9710-4740</orcidid><orcidid>https://orcid.org/0000-0003-1629-6478</orcidid><orcidid>https://orcid.org/0000-0002-6694-0965</orcidid><orcidid>https://orcid.org/0000-0002-6721-3284</orcidid><orcidid>https://orcid.org/0000-0003-4596-0702</orcidid><orcidid>https://orcid.org/0000-0001-7273-1898</orcidid></search><sort><creationdate>202201</creationdate><title>Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation</title><author>Moran, Sarah E. ; Hörst, Sarah M. ; He, Chao ; Radke, Michael J. ; Sebree, Joshua A. ; Izenberg, Noam R. ; Vuitton, Véronique ; Flandinet, Laurène ; Orthous‐Daunay, François‐Régis ; Wolters, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-981276bddf8e7854d6cef06454fc71337afbae99666e50825135c82883b421313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analogs</topic><topic>Astrochemistry</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric composition</topic><topic>Atmospheric methane</topic><topic>Carbon monoxide</topic><topic>Chambers</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemical properties</topic><topic>Dwarf planets</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Haze</topic><topic>Haze particles</topic><topic>Infrared signatures</topic><topic>Infrared spectra</topic><topic>infrared spectroscopy</topic><topic>Laboratories</topic><topic>laboratory</topic><topic>Mass spectrometry</topic><topic>Methane</topic><topic>Mixing ratio</topic><topic>Moon</topic><topic>Moons</topic><topic>Near infrared radiation</topic><topic>Nitrogen</topic><topic>Oxygen</topic><topic>Photochemistry</topic><topic>Physical properties</topic><topic>Planets</topic><topic>Pluto</topic><topic>Pluto (dwarf planet)</topic><topic>Reflectance</topic><topic>Saturn</topic><topic>Saturn satellites</topic><topic>Sciences of the Universe</topic><topic>Solar system</topic><topic>Space missions</topic><topic>Spectroscopy</topic><topic>Sunlight</topic><topic>tholin</topic><topic>Titan</topic><topic>Triton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moran, Sarah E.</creatorcontrib><creatorcontrib>Hörst, Sarah M.</creatorcontrib><creatorcontrib>He, Chao</creatorcontrib><creatorcontrib>Radke, Michael J.</creatorcontrib><creatorcontrib>Sebree, Joshua A.</creatorcontrib><creatorcontrib>Izenberg, Noam R.</creatorcontrib><creatorcontrib>Vuitton, Véronique</creatorcontrib><creatorcontrib>Flandinet, Laurène</creatorcontrib><creatorcontrib>Orthous‐Daunay, François‐Régis</creatorcontrib><creatorcontrib>Wolters, Cédric</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moran, Sarah E.</au><au>Hörst, Sarah M.</au><au>He, Chao</au><au>Radke, Michael J.</au><au>Sebree, Joshua A.</au><au>Izenberg, Noam R.</au><au>Vuitton, Véronique</au><au>Flandinet, Laurène</au><au>Orthous‐Daunay, François‐Régis</au><au>Wolters, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2022-01</date><risdate>2022</risdate><volume>127</volume><issue>1</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near‐infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton's tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen‐rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen‐ and nitrogen‐rich haze materials. These Triton haze analogs have clear observable signatures in their near‐infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies. Plain Language Summary Triton is the largest moon of the outer planet Neptune. It has a very thin atmosphere made of similar gases to the atmospheres of the dwarf planet Pluto and Saturn's moon Titan. Sunlight or high energy particles can break apart the molecules that make up these gases, which can then react to form solid particles, called hazes. We made haze particles in an atmospheric chamber under Triton‐like temperature (90 K) and atmospheric composition (small amounts of carbon monoxide and methane in molecular nitrogen), and then measured the chemical and physical properties of the resulting material. We compare our results to similar measurements of laboratory materials made for Pluto and Titan. Our results show larger oxygen and nitrogen contents for these Triton particles, suggesting that increasing carbon monoxide in the atmosphere changes the chemistry of hazes. Within the laboratory hazes, we see signatures of molecular bonds containing oxygen in the near‐infrared, which might be useful for identifying these species with future observations of or missions to Triton. Key Points Multiple solar system bodies have complex photochemical hazes which derive from their nitrogen and carbon‐rich atmospheres We generate and measure the properties of analog hazes (“tholin”) specific to Triton‐like composition and temperature Despite other similarities, Triton tholin are much more strongly oxygenated and slightly more nitrogenated than Titan and Pluto tholin</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JE006984</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-4072-181X</orcidid><orcidid>https://orcid.org/0000-0002-9710-4740</orcidid><orcidid>https://orcid.org/0000-0003-1629-6478</orcidid><orcidid>https://orcid.org/0000-0002-6694-0965</orcidid><orcidid>https://orcid.org/0000-0002-6721-3284</orcidid><orcidid>https://orcid.org/0000-0003-4596-0702</orcidid><orcidid>https://orcid.org/0000-0001-7273-1898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2022-01, Vol.127 (1), p.n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_hal_primary_oai_HAL_insu_03559249v2
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Analogs
Astrochemistry
Atmosphere
Atmospheric chemistry
Atmospheric composition
Atmospheric methane
Carbon monoxide
Chambers
Chemical bonds
Chemical composition
Chemical properties
Dwarf planets
Fourier transforms
Gases
Haze
Haze particles
Infrared signatures
Infrared spectra
infrared spectroscopy
Laboratories
laboratory
Mass spectrometry
Methane
Mixing ratio
Moon
Moons
Near infrared radiation
Nitrogen
Oxygen
Photochemistry
Physical properties
Planets
Pluto
Pluto (dwarf planet)
Reflectance
Saturn
Saturn satellites
Sciences of the Universe
Solar system
Space missions
Spectroscopy
Sunlight
tholin
Titan
Triton
title Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triton%20Haze%20Analogs:%20The%20Role%20of%20Carbon%20Monoxide%20in%20Haze%20Formation&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Moran,%20Sarah%20E.&rft.date=2022-01&rft.volume=127&rft.issue=1&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2021JE006984&rft_dat=%3Cproquest_hal_p%3E2622983255%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622983255&rft_id=info:pmid/&rfr_iscdi=true