Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2007-01, Vol.24 (1), p.3-21
Hauptverfasser: Behrendt, Andreas, Wulfmeyer, Volker, Bauer, Hans-Stefan, Schaberl, Thorsten, Di Girolamo, Paolo, Summa, Donato, Kiemle, Christoph, Ehret, Gerhard, Whiteman, David N., Demoz, Belay B., Browell, Edward V., Ismail, Syed, Ferrare, Richard, Kooi, Susan, Wang, Junhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 3
container_title Journal of atmospheric and oceanic technology
container_volume 24
creator Behrendt, Andreas
Wulfmeyer, Volker
Bauer, Hans-Stefan
Schaberl, Thorsten
Di Girolamo, Paolo
Summa, Donato
Kiemle, Christoph
Ehret, Gerhard
Whiteman, David N.
Demoz, Belay B.
Browell, Edward V.
Ismail, Syed
Ferrare, Richard
Kooi, Susan
Wang, Junhong
description The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% for SRL compared to LASE (LASE wetter) in the height range of 1.3–3.8 km above sea level (450–2950 m above ground level at the SRL site) were found. Putting equal weight on the data reliability of the three instruments, these results yield relative bias values of −4.6%, −0.4%, and +5.0% for DLR DIAL, SRL, and LASE, respectively. Furthermore, measurements of the Snow White (SW) chilled-mirror hygrometer radiosonde were compared with lidar data. For the four comparisons possible between SW radiosondes and SRL, an overall bias of (−0.27 ± 0.30) g kg−1 or −3.2% ± 4.5% of SW compared to SRL (SW drier) again for 1.3–3.8 km above sea level was found. Because it is a challenging effort to reach an accuracy of humidity measurements down to the ∼5% level, the overall results are very satisfactory and confirm the high and stable performance of the instruments and the low noise errors of each profile.
doi_str_mv 10.1175/JTECH1924.1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03533102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36535583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1f6fb1b3d78e411a0ae13de1e14c77a1c56ef190bac992424e752f104eaa82fc3</originalsourceid><addsrcrecordid>eNqF0s1u1DAQAOAIgcRSOPECFgcOoCweO84PtyW0zaKtWkGBozUbT7quknixE9A-V1-QrIL2wKUnS9Y3v5ooeg18CZCpD19uz8sKCpEs4Um0ACV4zBORPo0WPJNFzFUmnkcvQrjnnIOEdBE9rPuBfO26PXobXM9cw37i9MV-4N559hkHZFeEYfRk2B877NjGGvTMjN72d2xdXd9owblYshv0A1t_ZCvrt873xAbHLr0bexN_wjBFz4HfDmGgLjDsDStPdcOcu9zZtiUTX1nvp-rV4c67jo7tfEVj3QQNhZfRswbbQK_-vWfR94vz27KKN9eX63K1iWup1BBDkzZb2EqT5ZQAIEcCaQgIkjrLEGqVUgMF32JdTCsTCWVKNMATQsxFU8uz6N2cd4et3nvboT9oh1ZXq422fRg1l0pK4OI3TPjtjPfe_RopDLqzoaa2xZ7cGLRM1dRVLh-FAqBIpUgehVCoJE-yfIJv_oP3bvT9tBothFAcFBzR-xnV3oXgqTlNBFwfj0efjkeD_As5K7c3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222501518</pqid></control><display><type>article</type><title>Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Behrendt, Andreas ; Wulfmeyer, Volker ; Bauer, Hans-Stefan ; Schaberl, Thorsten ; Di Girolamo, Paolo ; Summa, Donato ; Kiemle, Christoph ; Ehret, Gerhard ; Whiteman, David N. ; Demoz, Belay B. ; Browell, Edward V. ; Ismail, Syed ; Ferrare, Richard ; Kooi, Susan ; Wang, Junhong</creator><creatorcontrib>Behrendt, Andreas ; Wulfmeyer, Volker ; Bauer, Hans-Stefan ; Schaberl, Thorsten ; Di Girolamo, Paolo ; Summa, Donato ; Kiemle, Christoph ; Ehret, Gerhard ; Whiteman, David N. ; Demoz, Belay B. ; Browell, Edward V. ; Ismail, Syed ; Ferrare, Richard ; Kooi, Susan ; Wang, Junhong</creatorcontrib><description>The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% for SRL compared to LASE (LASE wetter) in the height range of 1.3–3.8 km above sea level (450–2950 m above ground level at the SRL site) were found. Putting equal weight on the data reliability of the three instruments, these results yield relative bias values of −4.6%, −0.4%, and +5.0% for DLR DIAL, SRL, and LASE, respectively. Furthermore, measurements of the Snow White (SW) chilled-mirror hygrometer radiosonde were compared with lidar data. For the four comparisons possible between SW radiosondes and SRL, an overall bias of (−0.27 ± 0.30) g kg−1 or −3.2% ± 4.5% of SW compared to SRL (SW drier) again for 1.3–3.8 km above sea level was found. Because it is a challenging effort to reach an accuracy of humidity measurements down to the ∼5% level, the overall results are very satisfactory and confirm the high and stable performance of the instruments and the low noise errors of each profile.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH1924.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accuracy ; Atmospheric and Oceanic Physics ; Comparative analysis ; Evaporation ; Lidar ; Meteorology ; Ocean, Atmosphere ; Physics ; Radiosondes ; Remote sensing systems ; Sciences of the Universe ; Sea level ; Water vapor</subject><ispartof>Journal of atmospheric and oceanic technology, 2007-01, Vol.24 (1), p.3-21</ispartof><rights>Copyright American Meteorological Society Jan 2007</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1f6fb1b3d78e411a0ae13de1e14c77a1c56ef190bac992424e752f104eaa82fc3</citedby><cites>FETCH-LOGICAL-c355t-1f6fb1b3d78e411a0ae13de1e14c77a1c56ef190bac992424e752f104eaa82fc3</cites><orcidid>0000-0003-4882-2524 ; 0000-0002-7420-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3667,27903,27904</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03533102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrendt, Andreas</creatorcontrib><creatorcontrib>Wulfmeyer, Volker</creatorcontrib><creatorcontrib>Bauer, Hans-Stefan</creatorcontrib><creatorcontrib>Schaberl, Thorsten</creatorcontrib><creatorcontrib>Di Girolamo, Paolo</creatorcontrib><creatorcontrib>Summa, Donato</creatorcontrib><creatorcontrib>Kiemle, Christoph</creatorcontrib><creatorcontrib>Ehret, Gerhard</creatorcontrib><creatorcontrib>Whiteman, David N.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Browell, Edward V.</creatorcontrib><creatorcontrib>Ismail, Syed</creatorcontrib><creatorcontrib>Ferrare, Richard</creatorcontrib><creatorcontrib>Kooi, Susan</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><title>Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes</title><title>Journal of atmospheric and oceanic technology</title><description>The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% for SRL compared to LASE (LASE wetter) in the height range of 1.3–3.8 km above sea level (450–2950 m above ground level at the SRL site) were found. Putting equal weight on the data reliability of the three instruments, these results yield relative bias values of −4.6%, −0.4%, and +5.0% for DLR DIAL, SRL, and LASE, respectively. Furthermore, measurements of the Snow White (SW) chilled-mirror hygrometer radiosonde were compared with lidar data. For the four comparisons possible between SW radiosondes and SRL, an overall bias of (−0.27 ± 0.30) g kg−1 or −3.2% ± 4.5% of SW compared to SRL (SW drier) again for 1.3–3.8 km above sea level was found. Because it is a challenging effort to reach an accuracy of humidity measurements down to the ∼5% level, the overall results are very satisfactory and confirm the high and stable performance of the instruments and the low noise errors of each profile.</description><subject>Accuracy</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Comparative analysis</subject><subject>Evaporation</subject><subject>Lidar</subject><subject>Meteorology</subject><subject>Ocean, Atmosphere</subject><subject>Physics</subject><subject>Radiosondes</subject><subject>Remote sensing systems</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Water vapor</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s1u1DAQAOAIgcRSOPECFgcOoCweO84PtyW0zaKtWkGBozUbT7quknixE9A-V1-QrIL2wKUnS9Y3v5ooeg18CZCpD19uz8sKCpEs4Um0ACV4zBORPo0WPJNFzFUmnkcvQrjnnIOEdBE9rPuBfO26PXobXM9cw37i9MV-4N559hkHZFeEYfRk2B877NjGGvTMjN72d2xdXd9owblYshv0A1t_ZCvrt873xAbHLr0bexN_wjBFz4HfDmGgLjDsDStPdcOcu9zZtiUTX1nvp-rV4c67jo7tfEVj3QQNhZfRswbbQK_-vWfR94vz27KKN9eX63K1iWup1BBDkzZb2EqT5ZQAIEcCaQgIkjrLEGqVUgMF32JdTCsTCWVKNMATQsxFU8uz6N2cd4et3nvboT9oh1ZXq422fRg1l0pK4OI3TPjtjPfe_RopDLqzoaa2xZ7cGLRM1dRVLh-FAqBIpUgehVCoJE-yfIJv_oP3bvT9tBothFAcFBzR-xnV3oXgqTlNBFwfj0efjkeD_As5K7c3</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Behrendt, Andreas</creator><creator>Wulfmeyer, Volker</creator><creator>Bauer, Hans-Stefan</creator><creator>Schaberl, Thorsten</creator><creator>Di Girolamo, Paolo</creator><creator>Summa, Donato</creator><creator>Kiemle, Christoph</creator><creator>Ehret, Gerhard</creator><creator>Whiteman, David N.</creator><creator>Demoz, Belay B.</creator><creator>Browell, Edward V.</creator><creator>Ismail, Syed</creator><creator>Ferrare, Richard</creator><creator>Kooi, Susan</creator><creator>Wang, Junhong</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>H95</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4882-2524</orcidid><orcidid>https://orcid.org/0000-0002-7420-3164</orcidid></search><sort><creationdate>20070101</creationdate><title>Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes</title><author>Behrendt, Andreas ; Wulfmeyer, Volker ; Bauer, Hans-Stefan ; Schaberl, Thorsten ; Di Girolamo, Paolo ; Summa, Donato ; Kiemle, Christoph ; Ehret, Gerhard ; Whiteman, David N. ; Demoz, Belay B. ; Browell, Edward V. ; Ismail, Syed ; Ferrare, Richard ; Kooi, Susan ; Wang, Junhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1f6fb1b3d78e411a0ae13de1e14c77a1c56ef190bac992424e752f104eaa82fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Comparative analysis</topic><topic>Evaporation</topic><topic>Lidar</topic><topic>Meteorology</topic><topic>Ocean, Atmosphere</topic><topic>Physics</topic><topic>Radiosondes</topic><topic>Remote sensing systems</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrendt, Andreas</creatorcontrib><creatorcontrib>Wulfmeyer, Volker</creatorcontrib><creatorcontrib>Bauer, Hans-Stefan</creatorcontrib><creatorcontrib>Schaberl, Thorsten</creatorcontrib><creatorcontrib>Di Girolamo, Paolo</creatorcontrib><creatorcontrib>Summa, Donato</creatorcontrib><creatorcontrib>Kiemle, Christoph</creatorcontrib><creatorcontrib>Ehret, Gerhard</creatorcontrib><creatorcontrib>Whiteman, David N.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Browell, Edward V.</creatorcontrib><creatorcontrib>Ismail, Syed</creatorcontrib><creatorcontrib>Ferrare, Richard</creatorcontrib><creatorcontrib>Kooi, Susan</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrendt, Andreas</au><au>Wulfmeyer, Volker</au><au>Bauer, Hans-Stefan</au><au>Schaberl, Thorsten</au><au>Di Girolamo, Paolo</au><au>Summa, Donato</au><au>Kiemle, Christoph</au><au>Ehret, Gerhard</au><au>Whiteman, David N.</au><au>Demoz, Belay B.</au><au>Browell, Edward V.</au><au>Ismail, Syed</au><au>Ferrare, Richard</au><au>Kooi, Susan</au><au>Wang, Junhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>24</volume><issue>1</issue><spage>3</spage><epage>21</epage><pages>3-21</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% for SRL compared to LASE (LASE wetter) in the height range of 1.3–3.8 km above sea level (450–2950 m above ground level at the SRL site) were found. Putting equal weight on the data reliability of the three instruments, these results yield relative bias values of −4.6%, −0.4%, and +5.0% for DLR DIAL, SRL, and LASE, respectively. Furthermore, measurements of the Snow White (SW) chilled-mirror hygrometer radiosonde were compared with lidar data. For the four comparisons possible between SW radiosondes and SRL, an overall bias of (−0.27 ± 0.30) g kg−1 or −3.2% ± 4.5% of SW compared to SRL (SW drier) again for 1.3–3.8 km above sea level was found. Because it is a challenging effort to reach an accuracy of humidity measurements down to the ∼5% level, the overall results are very satisfactory and confirm the high and stable performance of the instruments and the low noise errors of each profile.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH1924.1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4882-2524</orcidid><orcidid>https://orcid.org/0000-0002-7420-3164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2007-01, Vol.24 (1), p.3-21
issn 0739-0572
1520-0426
language eng
recordid cdi_hal_primary_oai_HAL_insu_03533102v1
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Atmospheric and Oceanic Physics
Comparative analysis
Evaporation
Lidar
Meteorology
Ocean, Atmosphere
Physics
Radiosondes
Remote sensing systems
Sciences of the Universe
Sea level
Water vapor
title Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercomparison%20of%20Water%20Vapor%20Data%20Measured%20with%20Lidar%20during%20IHOP_2002.%20Part%20I:%20Airborne%20to%20Ground-Based%20Lidar%20Systems%20and%20Comparisons%20with%20Chilled-Mirror%20Hygrometer%20Radiosondes&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Behrendt,%20Andreas&rft.date=2007-01-01&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=21&rft.pages=3-21&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH1924.1&rft_dat=%3Cproquest_hal_p%3E36535583%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222501518&rft_id=info:pmid/&rfr_iscdi=true