Influence of temperature on brittle creep in sandstones

The characterization of time‐dependent brittle creep, promoted by chemically active pore fluids, is fundamental to our understanding of the long‐term evolution and dynamics of the Earth's crust. Here we report results from a study of the influence of temperature on both short‐term strength and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2009-10, Vol.36 (19), p.np-n/a
Hauptverfasser: Heap, M. J., Baud, P., Meredith, P. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page np
container_title Geophysical research letters
container_volume 36
creator Heap, M. J.
Baud, P.
Meredith, P. G.
description The characterization of time‐dependent brittle creep, promoted by chemically active pore fluids, is fundamental to our understanding of the long‐term evolution and dynamics of the Earth's crust. Here we report results from a study of the influence of temperature on both short‐term strength and time‐dependent brittle creep in three sandstones under triaxial stress conditions. We show that an increase in temperature from 20° to 75°C significantly enhances stress corrosion cracking in all three sandstones, leading to (1) a systematic reduction in strength during constant strain rate experiments and (2) an increase by several orders of magnitude in brittle creep strain rates during stress‐stepping creep experiments. We also show that a conventional creep experiment performed at 75°C exhibits a qualitatively similar three‐stage brittle creep curve as that observed at ambient temperature. Extrapolation of our results suggests that temperature is likely to be the dominant influence on the evolution of creep strain rate with depth in the shallow crust.
doi_str_mv 10.1029/2009GL039373
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03523371v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257299321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5681-74ec8811757a462349526e7713c51c8be7610406a7359043b1a209c34d3d731e3</originalsourceid><addsrcrecordid>eNp90N9rFDEQB_AgCp7VN_-ARRBEXM1k8mPzWIpei2sVqfUx5HKzuHUveya7av97c2w5xAefkpDPfJkZxp4Cfw1c2DeCc7tuOVo0eI-twEpZN5yb-2xVfspdGP2QPcr5hnOOHGHFzEXshplioGrsqol2e0p-mlN5xmqT-mkaqAqJaF_1sco-bvM0RsqP2YPOD5me3J0n7Mu7t1dn53X7cX1xdtrWXukGaiMpNA2AUcZLLVBaJTQZAxgUhGZDRgOXXHuDynKJG_CC24Byi1uDQHjCXi653_zg9qnf-XTrRt-789PW9THPjqMSiAZ-QsEvFrxP44-Z8uR2fQ40DD7SOGcHSoIEbe2BPvuH3oxzimUU10grQKlGFPRqQSGNOSfqjh0Ad4eNu783Xvjzu0yfgx-65GPo87FGCCic6-LE4n71A93-N9OtP7dCCzg0XC9FfZ7o97HIp-9OGzTKfb1cu-tP5oO5fn_prvAP72-ZQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849215582</pqid></control><display><type>article</type><title>Influence of temperature on brittle creep in sandstones</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Heap, M. J. ; Baud, P. ; Meredith, P. G.</creator><creatorcontrib>Heap, M. J. ; Baud, P. ; Meredith, P. G.</creatorcontrib><description>The characterization of time‐dependent brittle creep, promoted by chemically active pore fluids, is fundamental to our understanding of the long‐term evolution and dynamics of the Earth's crust. Here we report results from a study of the influence of temperature on both short‐term strength and time‐dependent brittle creep in three sandstones under triaxial stress conditions. We show that an increase in temperature from 20° to 75°C significantly enhances stress corrosion cracking in all three sandstones, leading to (1) a systematic reduction in strength during constant strain rate experiments and (2) an increase by several orders of magnitude in brittle creep strain rates during stress‐stepping creep experiments. We also show that a conventional creep experiment performed at 75°C exhibits a qualitatively similar three‐stage brittle creep curve as that observed at ambient temperature. Extrapolation of our results suggests that temperature is likely to be the dominant influence on the evolution of creep strain rate with depth in the shallow crust.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL039373</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Ambient temperature ; brittle creep ; Brittleness ; Creep (materials) ; Deformation ; Earth sciences ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; Geology ; Geophysics ; Materials creep ; Materials science ; Mineralogy ; Petrology ; Physical properties ; Rocks ; Sandstones ; Sciences of the Universe ; Strain rate ; Strength ; Stress corrosion ; Stress corrosion cracking ; temperature ; Temperature effects</subject><ispartof>Geophysical research letters, 2009-10, Vol.36 (19), p.np-n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5681-74ec8811757a462349526e7713c51c8be7610406a7359043b1a209c34d3d731e3</citedby><cites>FETCH-LOGICAL-a5681-74ec8811757a462349526e7713c51c8be7610406a7359043b1a209c34d3d731e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL039373$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL039373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22120006$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03523371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Heap, M. J.</creatorcontrib><creatorcontrib>Baud, P.</creatorcontrib><creatorcontrib>Meredith, P. G.</creatorcontrib><title>Influence of temperature on brittle creep in sandstones</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The characterization of time‐dependent brittle creep, promoted by chemically active pore fluids, is fundamental to our understanding of the long‐term evolution and dynamics of the Earth's crust. Here we report results from a study of the influence of temperature on both short‐term strength and time‐dependent brittle creep in three sandstones under triaxial stress conditions. We show that an increase in temperature from 20° to 75°C significantly enhances stress corrosion cracking in all three sandstones, leading to (1) a systematic reduction in strength during constant strain rate experiments and (2) an increase by several orders of magnitude in brittle creep strain rates during stress‐stepping creep experiments. We also show that a conventional creep experiment performed at 75°C exhibits a qualitatively similar three‐stage brittle creep curve as that observed at ambient temperature. Extrapolation of our results suggests that temperature is likely to be the dominant influence on the evolution of creep strain rate with depth in the shallow crust.</description><subject>Ambient temperature</subject><subject>brittle creep</subject><subject>Brittleness</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Materials creep</subject><subject>Materials science</subject><subject>Mineralogy</subject><subject>Petrology</subject><subject>Physical properties</subject><subject>Rocks</subject><subject>Sandstones</subject><subject>Sciences of the Universe</subject><subject>Strain rate</subject><subject>Strength</subject><subject>Stress corrosion</subject><subject>Stress corrosion cracking</subject><subject>temperature</subject><subject>Temperature effects</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90N9rFDEQB_AgCp7VN_-ARRBEXM1k8mPzWIpei2sVqfUx5HKzuHUveya7av97c2w5xAefkpDPfJkZxp4Cfw1c2DeCc7tuOVo0eI-twEpZN5yb-2xVfspdGP2QPcr5hnOOHGHFzEXshplioGrsqol2e0p-mlN5xmqT-mkaqAqJaF_1sco-bvM0RsqP2YPOD5me3J0n7Mu7t1dn53X7cX1xdtrWXukGaiMpNA2AUcZLLVBaJTQZAxgUhGZDRgOXXHuDynKJG_CC24Byi1uDQHjCXi653_zg9qnf-XTrRt-789PW9THPjqMSiAZ-QsEvFrxP44-Z8uR2fQ40DD7SOGcHSoIEbe2BPvuH3oxzimUU10grQKlGFPRqQSGNOSfqjh0Ad4eNu783Xvjzu0yfgx-65GPo87FGCCic6-LE4n71A93-N9OtP7dCCzg0XC9FfZ7o97HIp-9OGzTKfb1cu-tP5oO5fn_prvAP72-ZQQ</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Heap, M. J.</creator><creator>Baud, P.</creator><creator>Meredith, P. G.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SE</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>200910</creationdate><title>Influence of temperature on brittle creep in sandstones</title><author>Heap, M. J. ; Baud, P. ; Meredith, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5681-74ec8811757a462349526e7713c51c8be7610406a7359043b1a209c34d3d731e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambient temperature</topic><topic>brittle creep</topic><topic>Brittleness</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Materials creep</topic><topic>Materials science</topic><topic>Mineralogy</topic><topic>Petrology</topic><topic>Physical properties</topic><topic>Rocks</topic><topic>Sandstones</topic><topic>Sciences of the Universe</topic><topic>Strain rate</topic><topic>Strength</topic><topic>Stress corrosion</topic><topic>Stress corrosion cracking</topic><topic>temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heap, M. J.</creatorcontrib><creatorcontrib>Baud, P.</creatorcontrib><creatorcontrib>Meredith, P. G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Corrosion Abstracts</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heap, M. J.</au><au>Baud, P.</au><au>Meredith, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of temperature on brittle creep in sandstones</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2009-10</date><risdate>2009</risdate><volume>36</volume><issue>19</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The characterization of time‐dependent brittle creep, promoted by chemically active pore fluids, is fundamental to our understanding of the long‐term evolution and dynamics of the Earth's crust. Here we report results from a study of the influence of temperature on both short‐term strength and time‐dependent brittle creep in three sandstones under triaxial stress conditions. We show that an increase in temperature from 20° to 75°C significantly enhances stress corrosion cracking in all three sandstones, leading to (1) a systematic reduction in strength during constant strain rate experiments and (2) an increase by several orders of magnitude in brittle creep strain rates during stress‐stepping creep experiments. We also show that a conventional creep experiment performed at 75°C exhibits a qualitatively similar three‐stage brittle creep curve as that observed at ambient temperature. Extrapolation of our results suggests that temperature is likely to be the dominant influence on the evolution of creep strain rate with depth in the shallow crust.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL039373</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2009-10, Vol.36 (19), p.np-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_insu_03523371v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Ambient temperature
brittle creep
Brittleness
Creep (materials)
Deformation
Earth sciences
Earth, ocean, space
Evolution
Exact sciences and technology
Geology
Geophysics
Materials creep
Materials science
Mineralogy
Petrology
Physical properties
Rocks
Sandstones
Sciences of the Universe
Strain rate
Strength
Stress corrosion
Stress corrosion cracking
temperature
Temperature effects
title Influence of temperature on brittle creep in sandstones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20temperature%20on%20brittle%20creep%20in%20sandstones&rft.jtitle=Geophysical%20research%20letters&rft.au=Heap,%20M.%20J.&rft.date=2009-10&rft.volume=36&rft.issue=19&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL039373&rft_dat=%3Cproquest_hal_p%3E2257299321%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849215582&rft_id=info:pmid/&rfr_iscdi=true