LIDAR altimeter conception for HERA spacecraft
Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigat...
Gespeichert in:
Veröffentlicht in: | Aircraft Engineering and Aerospace Technology 2021-08, Vol.93 (6), p.1018-1028 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 6 |
container_start_page | 1018 |
container_title | Aircraft Engineering and Aerospace Technology |
container_volume | 93 |
creator | Dias, Nicole Gomes Nadal Arribas, Beltran Gordo, Paulo Sousa, Tiago Marinho, João Melicio, Rui Amorim, António Michel, Patrick |
description | Purpose
This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.
Design/methodology/approach
The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.
Findings
The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.
Originality/value
In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. |
doi_str_mv | 10.1108/AEAT-12-2020-0300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03381691v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560056212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOKc_wLeCb0LmzU3Spo9lTjcoCGPvIU1T7OjamnSC_96WiiD4dO_Ddw6Hj5B7BivGQD1lm-xAGVIEBAoc4IIsWCIVFcj45fQLRZUSeE1uQjgCsFgCX5BVvnvO9pFphvrkBucj27XW9UPdtVHV-Wi72WdR6I111ptquCVXlWmCu_u5S3J42RzWW5q_ve7WWU6tEDDQCqWoYsllohCBmVIkCQKXJnUlysRgwVIFoohdoqxVsogLV6qkApuqdBy8JI9z7btpdO_rk_FfujO13ma5rttw1sC5YnHKPif4YYZ7332cXRj0sTv7dpynUcYAMkaGI8VmyvouBO-q314GelKoJ4WaoZ4U6knhmIE5407Om6b8N_LHOv8Gx3duGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560056212</pqid></control><display><type>article</type><title>LIDAR altimeter conception for HERA spacecraft</title><source>Emerald Journals</source><creator>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</creator><creatorcontrib>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</creatorcontrib><description>Purpose
This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.
Design/methodology/approach
The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.
Findings
The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.
Originality/value
In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</description><identifier>ISSN: 1748-8842</identifier><identifier>ISSN: 0002-2667</identifier><identifier>EISSN: 1758-4213</identifier><identifier>EISSN: 1748-8842</identifier><identifier>DOI: 10.1108/AEAT-12-2020-0300</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Altimeters ; Aperture ; Asteroid collisions ; Asteroid deflection ; Asteroids ; Astrophysics ; Collision dynamics ; Cubesat ; Doppler tracking ; Earth and Planetary Astrophysics ; Energy ; Engineering Sciences ; Gravimetry ; Ground stations ; Integrated circuits ; Iterative methods ; Lasers ; Lidar ; Low noise ; Measurement techniques ; Mercury ; Moon ; Navigation ; Operating temperature ; Optics ; Photonic ; Power ; Radar tracking ; Radiation ; Random vibration ; Receivers & amplifiers ; Satellite tracking ; Sciences of the Universe ; Seismographs ; Semiconductors ; Sensors ; Simulation ; Space missions ; Spacecraft ; Static loads ; Telescopes ; Topography</subject><ispartof>Aircraft Engineering and Aerospace Technology, 2021-08, Vol.93 (6), p.1018-1028</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</citedby><cites>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</cites><orcidid>0000-0002-0884-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,961,27901,27902</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03381691$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dias, Nicole Gomes</creatorcontrib><creatorcontrib>Nadal Arribas, Beltran</creatorcontrib><creatorcontrib>Gordo, Paulo</creatorcontrib><creatorcontrib>Sousa, Tiago</creatorcontrib><creatorcontrib>Marinho, João</creatorcontrib><creatorcontrib>Melicio, Rui</creatorcontrib><creatorcontrib>Amorim, António</creatorcontrib><creatorcontrib>Michel, Patrick</creatorcontrib><title>LIDAR altimeter conception for HERA spacecraft</title><title>Aircraft Engineering and Aerospace Technology</title><description>Purpose
This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.
Design/methodology/approach
The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.
Findings
The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.
Originality/value
In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</description><subject>Altimeters</subject><subject>Aperture</subject><subject>Asteroid collisions</subject><subject>Asteroid deflection</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Collision dynamics</subject><subject>Cubesat</subject><subject>Doppler tracking</subject><subject>Earth and Planetary Astrophysics</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Gravimetry</subject><subject>Ground stations</subject><subject>Integrated circuits</subject><subject>Iterative methods</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Low noise</subject><subject>Measurement techniques</subject><subject>Mercury</subject><subject>Moon</subject><subject>Navigation</subject><subject>Operating temperature</subject><subject>Optics</subject><subject>Photonic</subject><subject>Power</subject><subject>Radar tracking</subject><subject>Radiation</subject><subject>Random vibration</subject><subject>Receivers & amplifiers</subject><subject>Satellite tracking</subject><subject>Sciences of the Universe</subject><subject>Seismographs</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Space missions</subject><subject>Spacecraft</subject><subject>Static loads</subject><subject>Telescopes</subject><subject>Topography</subject><issn>1748-8842</issn><issn>0002-2667</issn><issn>1758-4213</issn><issn>1748-8842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkFFLwzAUhYMoOKc_wLeCb0LmzU3Spo9lTjcoCGPvIU1T7OjamnSC_96WiiD4dO_Ddw6Hj5B7BivGQD1lm-xAGVIEBAoc4IIsWCIVFcj45fQLRZUSeE1uQjgCsFgCX5BVvnvO9pFphvrkBucj27XW9UPdtVHV-Wi72WdR6I111ptquCVXlWmCu_u5S3J42RzWW5q_ve7WWU6tEDDQCqWoYsllohCBmVIkCQKXJnUlysRgwVIFoohdoqxVsogLV6qkApuqdBy8JI9z7btpdO_rk_FfujO13ma5rttw1sC5YnHKPif4YYZ7332cXRj0sTv7dpynUcYAMkaGI8VmyvouBO-q314GelKoJ4WaoZ4U6knhmIE5407Om6b8N_LHOv8Gx3duGw</recordid><startdate>20210812</startdate><enddate>20210812</enddate><creator>Dias, Nicole Gomes</creator><creator>Nadal Arribas, Beltran</creator><creator>Gordo, Paulo</creator><creator>Sousa, Tiago</creator><creator>Marinho, João</creator><creator>Melicio, Rui</creator><creator>Amorim, António</creator><creator>Michel, Patrick</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid></search><sort><creationdate>20210812</creationdate><title>LIDAR altimeter conception for HERA spacecraft</title><author>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Altimeters</topic><topic>Aperture</topic><topic>Asteroid collisions</topic><topic>Asteroid deflection</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Collision dynamics</topic><topic>Cubesat</topic><topic>Doppler tracking</topic><topic>Earth and Planetary Astrophysics</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Gravimetry</topic><topic>Ground stations</topic><topic>Integrated circuits</topic><topic>Iterative methods</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Low noise</topic><topic>Measurement techniques</topic><topic>Mercury</topic><topic>Moon</topic><topic>Navigation</topic><topic>Operating temperature</topic><topic>Optics</topic><topic>Photonic</topic><topic>Power</topic><topic>Radar tracking</topic><topic>Radiation</topic><topic>Random vibration</topic><topic>Receivers & amplifiers</topic><topic>Satellite tracking</topic><topic>Sciences of the Universe</topic><topic>Seismographs</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Space missions</topic><topic>Spacecraft</topic><topic>Static loads</topic><topic>Telescopes</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, Nicole Gomes</creatorcontrib><creatorcontrib>Nadal Arribas, Beltran</creatorcontrib><creatorcontrib>Gordo, Paulo</creatorcontrib><creatorcontrib>Sousa, Tiago</creatorcontrib><creatorcontrib>Marinho, João</creatorcontrib><creatorcontrib>Melicio, Rui</creatorcontrib><creatorcontrib>Amorim, António</creatorcontrib><creatorcontrib>Michel, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Career & Technical Education Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Aircraft Engineering and Aerospace Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, Nicole Gomes</au><au>Nadal Arribas, Beltran</au><au>Gordo, Paulo</au><au>Sousa, Tiago</au><au>Marinho, João</au><au>Melicio, Rui</au><au>Amorim, António</au><au>Michel, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIDAR altimeter conception for HERA spacecraft</atitle><jtitle>Aircraft Engineering and Aerospace Technology</jtitle><date>2021-08-12</date><risdate>2021</risdate><volume>93</volume><issue>6</issue><spage>1018</spage><epage>1028</epage><pages>1018-1028</pages><issn>1748-8842</issn><issn>0002-2667</issn><eissn>1758-4213</eissn><eissn>1748-8842</eissn><abstract>Purpose
This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.
Design/methodology/approach
The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.
Findings
The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.
Originality/value
In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AEAT-12-2020-0300</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-8842 |
ispartof | Aircraft Engineering and Aerospace Technology, 2021-08, Vol.93 (6), p.1018-1028 |
issn | 1748-8842 0002-2667 1758-4213 1748-8842 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03381691v1 |
source | Emerald Journals |
subjects | Altimeters Aperture Asteroid collisions Asteroid deflection Asteroids Astrophysics Collision dynamics Cubesat Doppler tracking Earth and Planetary Astrophysics Energy Engineering Sciences Gravimetry Ground stations Integrated circuits Iterative methods Lasers Lidar Low noise Measurement techniques Mercury Moon Navigation Operating temperature Optics Photonic Power Radar tracking Radiation Random vibration Receivers & amplifiers Satellite tracking Sciences of the Universe Seismographs Semiconductors Sensors Simulation Space missions Spacecraft Static loads Telescopes Topography |
title | LIDAR altimeter conception for HERA spacecraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIDAR%20altimeter%20conception%20for%20HERA%20spacecraft&rft.jtitle=Aircraft%20Engineering%20and%20Aerospace%20Technology&rft.au=Dias,%20Nicole%20Gomes&rft.date=2021-08-12&rft.volume=93&rft.issue=6&rft.spage=1018&rft.epage=1028&rft.pages=1018-1028&rft.issn=1748-8842&rft.eissn=1758-4213&rft_id=info:doi/10.1108/AEAT-12-2020-0300&rft_dat=%3Cproquest_cross%3E2560056212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560056212&rft_id=info:pmid/&rfr_iscdi=true |