LIDAR altimeter conception for HERA spacecraft

Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aircraft Engineering and Aerospace Technology 2021-08, Vol.93 (6), p.1018-1028
Hauptverfasser: Dias, Nicole Gomes, Nadal Arribas, Beltran, Gordo, Paulo, Sousa, Tiago, Marinho, João, Melicio, Rui, Amorim, António, Michel, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 6
container_start_page 1018
container_title Aircraft Engineering and Aerospace Technology
container_volume 93
creator Dias, Nicole Gomes
Nadal Arribas, Beltran
Gordo, Paulo
Sousa, Tiago
Marinho, João
Melicio, Rui
Amorim, António
Michel, Patrick
description Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures. Design/methodology/approach The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry. Findings The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Originality/value In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.
doi_str_mv 10.1108/AEAT-12-2020-0300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03381691v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560056212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOKc_wLeCb0LmzU3Spo9lTjcoCGPvIU1T7OjamnSC_96WiiD4dO_Ddw6Hj5B7BivGQD1lm-xAGVIEBAoc4IIsWCIVFcj45fQLRZUSeE1uQjgCsFgCX5BVvnvO9pFphvrkBucj27XW9UPdtVHV-Wi72WdR6I111ptquCVXlWmCu_u5S3J42RzWW5q_ve7WWU6tEDDQCqWoYsllohCBmVIkCQKXJnUlysRgwVIFoohdoqxVsogLV6qkApuqdBy8JI9z7btpdO_rk_FfujO13ma5rttw1sC5YnHKPif4YYZ7332cXRj0sTv7dpynUcYAMkaGI8VmyvouBO-q314GelKoJ4WaoZ4U6knhmIE5407Om6b8N_LHOv8Gx3duGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560056212</pqid></control><display><type>article</type><title>LIDAR altimeter conception for HERA spacecraft</title><source>Emerald Journals</source><creator>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</creator><creatorcontrib>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</creatorcontrib><description>Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures. Design/methodology/approach The Asteroid Impact &amp; Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry. Findings The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Originality/value In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</description><identifier>ISSN: 1748-8842</identifier><identifier>ISSN: 0002-2667</identifier><identifier>EISSN: 1758-4213</identifier><identifier>EISSN: 1748-8842</identifier><identifier>DOI: 10.1108/AEAT-12-2020-0300</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Altimeters ; Aperture ; Asteroid collisions ; Asteroid deflection ; Asteroids ; Astrophysics ; Collision dynamics ; Cubesat ; Doppler tracking ; Earth and Planetary Astrophysics ; Energy ; Engineering Sciences ; Gravimetry ; Ground stations ; Integrated circuits ; Iterative methods ; Lasers ; Lidar ; Low noise ; Measurement techniques ; Mercury ; Moon ; Navigation ; Operating temperature ; Optics ; Photonic ; Power ; Radar tracking ; Radiation ; Random vibration ; Receivers &amp; amplifiers ; Satellite tracking ; Sciences of the Universe ; Seismographs ; Semiconductors ; Sensors ; Simulation ; Space missions ; Spacecraft ; Static loads ; Telescopes ; Topography</subject><ispartof>Aircraft Engineering and Aerospace Technology, 2021-08, Vol.93 (6), p.1018-1028</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</citedby><cites>FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</cites><orcidid>0000-0002-0884-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,961,27901,27902</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03381691$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dias, Nicole Gomes</creatorcontrib><creatorcontrib>Nadal Arribas, Beltran</creatorcontrib><creatorcontrib>Gordo, Paulo</creatorcontrib><creatorcontrib>Sousa, Tiago</creatorcontrib><creatorcontrib>Marinho, João</creatorcontrib><creatorcontrib>Melicio, Rui</creatorcontrib><creatorcontrib>Amorim, António</creatorcontrib><creatorcontrib>Michel, Patrick</creatorcontrib><title>LIDAR altimeter conception for HERA spacecraft</title><title>Aircraft Engineering and Aerospace Technology</title><description>Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures. Design/methodology/approach The Asteroid Impact &amp; Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry. Findings The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Originality/value In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</description><subject>Altimeters</subject><subject>Aperture</subject><subject>Asteroid collisions</subject><subject>Asteroid deflection</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Collision dynamics</subject><subject>Cubesat</subject><subject>Doppler tracking</subject><subject>Earth and Planetary Astrophysics</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Gravimetry</subject><subject>Ground stations</subject><subject>Integrated circuits</subject><subject>Iterative methods</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Low noise</subject><subject>Measurement techniques</subject><subject>Mercury</subject><subject>Moon</subject><subject>Navigation</subject><subject>Operating temperature</subject><subject>Optics</subject><subject>Photonic</subject><subject>Power</subject><subject>Radar tracking</subject><subject>Radiation</subject><subject>Random vibration</subject><subject>Receivers &amp; amplifiers</subject><subject>Satellite tracking</subject><subject>Sciences of the Universe</subject><subject>Seismographs</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Space missions</subject><subject>Spacecraft</subject><subject>Static loads</subject><subject>Telescopes</subject><subject>Topography</subject><issn>1748-8842</issn><issn>0002-2667</issn><issn>1758-4213</issn><issn>1748-8842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkFFLwzAUhYMoOKc_wLeCb0LmzU3Spo9lTjcoCGPvIU1T7OjamnSC_96WiiD4dO_Ddw6Hj5B7BivGQD1lm-xAGVIEBAoc4IIsWCIVFcj45fQLRZUSeE1uQjgCsFgCX5BVvnvO9pFphvrkBucj27XW9UPdtVHV-Wi72WdR6I111ptquCVXlWmCu_u5S3J42RzWW5q_ve7WWU6tEDDQCqWoYsllohCBmVIkCQKXJnUlysRgwVIFoohdoqxVsogLV6qkApuqdBy8JI9z7btpdO_rk_FfujO13ma5rttw1sC5YnHKPif4YYZ7332cXRj0sTv7dpynUcYAMkaGI8VmyvouBO-q314GelKoJ4WaoZ4U6knhmIE5407Om6b8N_LHOv8Gx3duGw</recordid><startdate>20210812</startdate><enddate>20210812</enddate><creator>Dias, Nicole Gomes</creator><creator>Nadal Arribas, Beltran</creator><creator>Gordo, Paulo</creator><creator>Sousa, Tiago</creator><creator>Marinho, João</creator><creator>Melicio, Rui</creator><creator>Amorim, António</creator><creator>Michel, Patrick</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid></search><sort><creationdate>20210812</creationdate><title>LIDAR altimeter conception for HERA spacecraft</title><author>Dias, Nicole Gomes ; Nadal Arribas, Beltran ; Gordo, Paulo ; Sousa, Tiago ; Marinho, João ; Melicio, Rui ; Amorim, António ; Michel, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f254f6535782201ad4772035a9ed257a2b19804b6e78cc85b6bed87f0c989213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Altimeters</topic><topic>Aperture</topic><topic>Asteroid collisions</topic><topic>Asteroid deflection</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Collision dynamics</topic><topic>Cubesat</topic><topic>Doppler tracking</topic><topic>Earth and Planetary Astrophysics</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Gravimetry</topic><topic>Ground stations</topic><topic>Integrated circuits</topic><topic>Iterative methods</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Low noise</topic><topic>Measurement techniques</topic><topic>Mercury</topic><topic>Moon</topic><topic>Navigation</topic><topic>Operating temperature</topic><topic>Optics</topic><topic>Photonic</topic><topic>Power</topic><topic>Radar tracking</topic><topic>Radiation</topic><topic>Random vibration</topic><topic>Receivers &amp; amplifiers</topic><topic>Satellite tracking</topic><topic>Sciences of the Universe</topic><topic>Seismographs</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Space missions</topic><topic>Spacecraft</topic><topic>Static loads</topic><topic>Telescopes</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, Nicole Gomes</creatorcontrib><creatorcontrib>Nadal Arribas, Beltran</creatorcontrib><creatorcontrib>Gordo, Paulo</creatorcontrib><creatorcontrib>Sousa, Tiago</creatorcontrib><creatorcontrib>Marinho, João</creatorcontrib><creatorcontrib>Melicio, Rui</creatorcontrib><creatorcontrib>Amorim, António</creatorcontrib><creatorcontrib>Michel, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Career &amp; Technical Education Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Aircraft Engineering and Aerospace Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, Nicole Gomes</au><au>Nadal Arribas, Beltran</au><au>Gordo, Paulo</au><au>Sousa, Tiago</au><au>Marinho, João</au><au>Melicio, Rui</au><au>Amorim, António</au><au>Michel, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIDAR altimeter conception for HERA spacecraft</atitle><jtitle>Aircraft Engineering and Aerospace Technology</jtitle><date>2021-08-12</date><risdate>2021</risdate><volume>93</volume><issue>6</issue><spage>1018</spage><epage>1028</epage><pages>1018-1028</pages><issn>1748-8842</issn><issn>0002-2667</issn><eissn>1758-4213</eissn><eissn>1748-8842</eissn><abstract>Purpose This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures. Design/methodology/approach The Asteroid Impact &amp; Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry. Findings The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Originality/value In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AEAT-12-2020-0300</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-8842
ispartof Aircraft Engineering and Aerospace Technology, 2021-08, Vol.93 (6), p.1018-1028
issn 1748-8842
0002-2667
1758-4213
1748-8842
language eng
recordid cdi_hal_primary_oai_HAL_insu_03381691v1
source Emerald Journals
subjects Altimeters
Aperture
Asteroid collisions
Asteroid deflection
Asteroids
Astrophysics
Collision dynamics
Cubesat
Doppler tracking
Earth and Planetary Astrophysics
Energy
Engineering Sciences
Gravimetry
Ground stations
Integrated circuits
Iterative methods
Lasers
Lidar
Low noise
Measurement techniques
Mercury
Moon
Navigation
Operating temperature
Optics
Photonic
Power
Radar tracking
Radiation
Random vibration
Receivers & amplifiers
Satellite tracking
Sciences of the Universe
Seismographs
Semiconductors
Sensors
Simulation
Space missions
Spacecraft
Static loads
Telescopes
Topography
title LIDAR altimeter conception for HERA spacecraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIDAR%20altimeter%20conception%20for%20HERA%20spacecraft&rft.jtitle=Aircraft%20Engineering%20and%20Aerospace%20Technology&rft.au=Dias,%20Nicole%20Gomes&rft.date=2021-08-12&rft.volume=93&rft.issue=6&rft.spage=1018&rft.epage=1028&rft.pages=1018-1028&rft.issn=1748-8842&rft.eissn=1758-4213&rft_id=info:doi/10.1108/AEAT-12-2020-0300&rft_dat=%3Cproquest_cross%3E2560056212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560056212&rft_id=info:pmid/&rfr_iscdi=true