Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone
This study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2021-12, Vol.149 (12), p.3961-3980 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3980 |
---|---|
container_issue | 12 |
container_start_page | 3961 |
container_title | Monthly weather review |
container_volume | 149 |
creator | Mazoyer, Marie Ricard, Didier Rivière, Gwendal Delanoë, Julien Arbogast, Philippe Vié, Benoit Lac, Christine Cazenave, Quitterie Pelon, Jacques |
description | This study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ in the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow, and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge grows more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes, and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice-related processes. |
doi_str_mv | 10.1175/MWR-D-21-0061.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03381560v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676143831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-102700d77efab1e32ba7299ed10c28b04a84afeb4f580091baff3c4722e2d6073</originalsourceid><addsrcrecordid>eNo90M9LwzAYxvEgCs7p2WvAm9DtfZP013HrphtMJ0OZByGkbbp1dM1s2kH_ezsnnt7Lh5eHLyH3CANE3x2-rFfOxGHoAHg4wAvSQ5eBAyLkl6QHwHwHPCGuyY21O-iQJ1iPfL3kSWUO29bmiaXz_UEltaWmpPVW07Wq9jQy5VG3pqJjXdRUlSld5elG03GTF2lebqjJfvHraD2ZftL58s2jUZsUptS35CpThdV3f7dPPp6m79HMWSyf59Fo4SRcuLWD3TaA1Pd1pmLUnMXKZ2GoU4SEBTEIFQiV6VhkbgAQYqyyjCfCZ0yz1AOf98nj-e9WFfJQ5XtVtdKoXM5GC5mXtpHAeYCuB0fW4YczPlTmu9G2ljvTVGW3TzLP91DwgGOnhmfV1bG20tn_XwR56i273nIiGcpTb4n8B02UcKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676143831</pqid></control><display><type>article</type><title>Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mazoyer, Marie ; Ricard, Didier ; Rivière, Gwendal ; Delanoë, Julien ; Arbogast, Philippe ; Vié, Benoit ; Lac, Christine ; Cazenave, Quitterie ; Pelon, Jacques</creator><creatorcontrib>Mazoyer, Marie ; Ricard, Didier ; Rivière, Gwendal ; Delanoë, Julien ; Arbogast, Philippe ; Vié, Benoit ; Lac, Christine ; Cazenave, Quitterie ; Pelon, Jacques</creatorcontrib><description>This study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ in the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow, and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge grows more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes, and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice-related processes.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-21-0061.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Air currents ; Airborne remote sensing ; Airborne sensing ; Belt conveyors ; Case studies ; Clouds ; Cold ; Cyclones ; Downstream effects ; Dropsondes ; Earth Sciences ; Extratropical cyclones ; Graupel ; Heating ; Hydrometeors ; Ice ; Melting ; Meteorology ; Microphysics ; Moisture content ; Reflectance ; Remote sensing ; Satellite data ; Sciences of the Universe ; Troposphere ; Vapor deposition ; Warm air ; Water content ; Waveguides ; Winds</subject><ispartof>Monthly weather review, 2021-12, Vol.149 (12), p.3961-3980</ispartof><rights>Copyright American Meteorological Society Dec 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-102700d77efab1e32ba7299ed10c28b04a84afeb4f580091baff3c4722e2d6073</citedby><cites>FETCH-LOGICAL-c345t-102700d77efab1e32ba7299ed10c28b04a84afeb4f580091baff3c4722e2d6073</cites><orcidid>0000-0003-2348-2383 ; 0000-0002-2604-0292 ; 0000-0002-7323-6300 ; 0000-0002-6056-5973 ; 0000-0002-6021-0603 ; 0000-0003-0324-3991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03381560$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazoyer, Marie</creatorcontrib><creatorcontrib>Ricard, Didier</creatorcontrib><creatorcontrib>Rivière, Gwendal</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Arbogast, Philippe</creatorcontrib><creatorcontrib>Vié, Benoit</creatorcontrib><creatorcontrib>Lac, Christine</creatorcontrib><creatorcontrib>Cazenave, Quitterie</creatorcontrib><creatorcontrib>Pelon, Jacques</creatorcontrib><title>Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone</title><title>Monthly weather review</title><description>This study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ in the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow, and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge grows more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes, and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice-related processes.</description><subject>Air currents</subject><subject>Airborne remote sensing</subject><subject>Airborne sensing</subject><subject>Belt conveyors</subject><subject>Case studies</subject><subject>Clouds</subject><subject>Cold</subject><subject>Cyclones</subject><subject>Downstream effects</subject><subject>Dropsondes</subject><subject>Earth Sciences</subject><subject>Extratropical cyclones</subject><subject>Graupel</subject><subject>Heating</subject><subject>Hydrometeors</subject><subject>Ice</subject><subject>Melting</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Moisture content</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Satellite data</subject><subject>Sciences of the Universe</subject><subject>Troposphere</subject><subject>Vapor deposition</subject><subject>Warm air</subject><subject>Water content</subject><subject>Waveguides</subject><subject>Winds</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90M9LwzAYxvEgCs7p2WvAm9DtfZP013HrphtMJ0OZByGkbbp1dM1s2kH_ezsnnt7Lh5eHLyH3CANE3x2-rFfOxGHoAHg4wAvSQ5eBAyLkl6QHwHwHPCGuyY21O-iQJ1iPfL3kSWUO29bmiaXz_UEltaWmpPVW07Wq9jQy5VG3pqJjXdRUlSld5elG03GTF2lebqjJfvHraD2ZftL58s2jUZsUptS35CpThdV3f7dPPp6m79HMWSyf59Fo4SRcuLWD3TaA1Pd1pmLUnMXKZ2GoU4SEBTEIFQiV6VhkbgAQYqyyjCfCZ0yz1AOf98nj-e9WFfJQ5XtVtdKoXM5GC5mXtpHAeYCuB0fW4YczPlTmu9G2ljvTVGW3TzLP91DwgGOnhmfV1bG20tn_XwR56i273nIiGcpTb4n8B02UcKs</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Mazoyer, Marie</creator><creator>Ricard, Didier</creator><creator>Rivière, Gwendal</creator><creator>Delanoë, Julien</creator><creator>Arbogast, Philippe</creator><creator>Vié, Benoit</creator><creator>Lac, Christine</creator><creator>Cazenave, Quitterie</creator><creator>Pelon, Jacques</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2348-2383</orcidid><orcidid>https://orcid.org/0000-0002-2604-0292</orcidid><orcidid>https://orcid.org/0000-0002-7323-6300</orcidid><orcidid>https://orcid.org/0000-0002-6056-5973</orcidid><orcidid>https://orcid.org/0000-0002-6021-0603</orcidid><orcidid>https://orcid.org/0000-0003-0324-3991</orcidid></search><sort><creationdate>20211201</creationdate><title>Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone</title><author>Mazoyer, Marie ; Ricard, Didier ; Rivière, Gwendal ; Delanoë, Julien ; Arbogast, Philippe ; Vié, Benoit ; Lac, Christine ; Cazenave, Quitterie ; Pelon, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-102700d77efab1e32ba7299ed10c28b04a84afeb4f580091baff3c4722e2d6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air currents</topic><topic>Airborne remote sensing</topic><topic>Airborne sensing</topic><topic>Belt conveyors</topic><topic>Case studies</topic><topic>Clouds</topic><topic>Cold</topic><topic>Cyclones</topic><topic>Downstream effects</topic><topic>Dropsondes</topic><topic>Earth Sciences</topic><topic>Extratropical cyclones</topic><topic>Graupel</topic><topic>Heating</topic><topic>Hydrometeors</topic><topic>Ice</topic><topic>Melting</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Moisture content</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Satellite data</topic><topic>Sciences of the Universe</topic><topic>Troposphere</topic><topic>Vapor deposition</topic><topic>Warm air</topic><topic>Water content</topic><topic>Waveguides</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazoyer, Marie</creatorcontrib><creatorcontrib>Ricard, Didier</creatorcontrib><creatorcontrib>Rivière, Gwendal</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Arbogast, Philippe</creatorcontrib><creatorcontrib>Vié, Benoit</creatorcontrib><creatorcontrib>Lac, Christine</creatorcontrib><creatorcontrib>Cazenave, Quitterie</creatorcontrib><creatorcontrib>Pelon, Jacques</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoyer, Marie</au><au>Ricard, Didier</au><au>Rivière, Gwendal</au><au>Delanoë, Julien</au><au>Arbogast, Philippe</au><au>Vié, Benoit</au><au>Lac, Christine</au><au>Cazenave, Quitterie</au><au>Pelon, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone</atitle><jtitle>Monthly weather review</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>149</volume><issue>12</issue><spage>3961</spage><epage>3980</epage><pages>3961-3980</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>This study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extratropical cyclone observed in the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ in the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow, and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge grows more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes, and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice-related processes.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-21-0061.1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2348-2383</orcidid><orcidid>https://orcid.org/0000-0002-2604-0292</orcidid><orcidid>https://orcid.org/0000-0002-7323-6300</orcidid><orcidid>https://orcid.org/0000-0002-6056-5973</orcidid><orcidid>https://orcid.org/0000-0002-6021-0603</orcidid><orcidid>https://orcid.org/0000-0003-0324-3991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2021-12, Vol.149 (12), p.3961-3980 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03381560v2 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Air currents Airborne remote sensing Airborne sensing Belt conveyors Case studies Clouds Cold Cyclones Downstream effects Dropsondes Earth Sciences Extratropical cyclones Graupel Heating Hydrometeors Ice Melting Meteorology Microphysics Moisture content Reflectance Remote sensing Satellite data Sciences of the Universe Troposphere Vapor deposition Warm air Water content Waveguides Winds |
title | Microphysics Impacts on the Warm Conveyor Belt and Ridge Building of the NAWDEX IOP6 Cyclone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microphysics%20Impacts%20on%20the%20Warm%20Conveyor%20Belt%20and%20Ridge%20Building%20of%20the%20NAWDEX%20IOP6%20Cyclone&rft.jtitle=Monthly%20weather%20review&rft.au=Mazoyer,%20Marie&rft.date=2021-12-01&rft.volume=149&rft.issue=12&rft.spage=3961&rft.epage=3980&rft.pages=3961-3980&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-21-0061.1&rft_dat=%3Cproquest_hal_p%3E2676143831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676143831&rft_id=info:pmid/&rfr_iscdi=true |