Effect of pressure on the deformation of quartz aggregates in the presence of H2O

Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed domi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural geology 2021-07, Vol.148, p.104351, Article 104351
Hauptverfasser: Nègre, L., Stünitz, H., Raimbourg, H., Lee, A., Précigout, J., Pongrac, P., Jeřábek, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104351
container_title Journal of structural geology
container_volume 148
creator Nègre, L.
Stünitz, H.
Raimbourg, H.
Lee, A.
Précigout, J.
Pongrac, P.
Jeřábek, P.
description Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies. •Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.
doi_str_mv 10.1016/j.jsg.2021.104351
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03201529v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814121000754</els_id><sourcerecordid>S0191814121000754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wJN7FrZmkv1o8FRKtUKhCHoOaTLZZml3a7It6K83y6pHTzPDPO_APITcAp0AheKhntShmjDKIM4Zz-GMjGBa8hQYhXMyoiAgnUIGl-QqhJrGTA7ZiLwurEXdJa1NDh5DOHpM2ibptpgYtK3fq87FOa4_jsp3X4mqKo-V6jAkbuD6HDYae2jJ1tfkwqpdwJufOibvT4u3-TJdrZ9f5rNVqrkQXVqgsTrLNEXOGW6QI53mIufMWrZhptAlt5llRsSOFUYANVRtRAa0KMspzfmY3A93t2onD97tlf-UrXJyOVtJ14SjpDz-njNxggjfDbD2LnSukU3rlQRKeSkZlMAiAb9EG4JH-3cTqOwVy1pGxbJXLAfFMfM4ZDD-eXLoZdCuV2Gcj1Klad0_6W9CjYEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</creator><creatorcontrib>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</creatorcontrib><description>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies. •Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</description><identifier>ISSN: 0191-8141</identifier><identifier>ISSN: 1873-1201</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/j.jsg.2021.104351</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dynamic recrystallization ; Earth Sciences ; Geofag: 450 ; Geosciences: 450 ; H2O weakening ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Mineralogi, petrologi, geokjemi: 462 ; Mineralogy, petrology, geochemistry: 462 ; Quartz deformation ; Quartz rheology ; Sciences of the Universe ; VDP</subject><ispartof>Journal of structural geology, 2021-07, Vol.148, p.104351, Article 104351</ispartof><rights>2021 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</citedby><cites>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</cites><orcidid>0000-0001-6387-9890 ; 0000-0002-7557-7782 ; 0000-0002-0530-376X ; 0000-0001-8411-4117 ; 0000-0002-9160-0989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsg.2021.104351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03201529$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nègre, L.</creatorcontrib><creatorcontrib>Stünitz, H.</creatorcontrib><creatorcontrib>Raimbourg, H.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Précigout, J.</creatorcontrib><creatorcontrib>Pongrac, P.</creatorcontrib><creatorcontrib>Jeřábek, P.</creatorcontrib><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><title>Journal of structural geology</title><description>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies. •Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</description><subject>Dynamic recrystallization</subject><subject>Earth Sciences</subject><subject>Geofag: 450</subject><subject>Geosciences: 450</subject><subject>H2O weakening</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Mineralogi, petrologi, geokjemi: 462</subject><subject>Mineralogy, petrology, geochemistry: 462</subject><subject>Quartz deformation</subject><subject>Quartz rheology</subject><subject>Sciences of the Universe</subject><subject>VDP</subject><issn>0191-8141</issn><issn>1873-1201</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wJN7FrZmkv1o8FRKtUKhCHoOaTLZZml3a7It6K83y6pHTzPDPO_APITcAp0AheKhntShmjDKIM4Zz-GMjGBa8hQYhXMyoiAgnUIGl-QqhJrGTA7ZiLwurEXdJa1NDh5DOHpM2ibptpgYtK3fq87FOa4_jsp3X4mqKo-V6jAkbuD6HDYae2jJ1tfkwqpdwJufOibvT4u3-TJdrZ9f5rNVqrkQXVqgsTrLNEXOGW6QI53mIufMWrZhptAlt5llRsSOFUYANVRtRAa0KMspzfmY3A93t2onD97tlf-UrXJyOVtJ14SjpDz-njNxggjfDbD2LnSukU3rlQRKeSkZlMAiAb9EG4JH-3cTqOwVy1pGxbJXLAfFMfM4ZDD-eXLoZdCuV2Gcj1Klad0_6W9CjYEQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nègre, L.</creator><creator>Stünitz, H.</creator><creator>Raimbourg, H.</creator><creator>Lee, A.</creator><creator>Précigout, J.</creator><creator>Pongrac, P.</creator><creator>Jeřábek, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6387-9890</orcidid><orcidid>https://orcid.org/0000-0002-7557-7782</orcidid><orcidid>https://orcid.org/0000-0002-0530-376X</orcidid><orcidid>https://orcid.org/0000-0001-8411-4117</orcidid><orcidid>https://orcid.org/0000-0002-9160-0989</orcidid></search><sort><creationdate>20210701</creationdate><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><author>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic recrystallization</topic><topic>Earth Sciences</topic><topic>Geofag: 450</topic><topic>Geosciences: 450</topic><topic>H2O weakening</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Mineralogi, petrologi, geokjemi: 462</topic><topic>Mineralogy, petrology, geochemistry: 462</topic><topic>Quartz deformation</topic><topic>Quartz rheology</topic><topic>Sciences of the Universe</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nègre, L.</creatorcontrib><creatorcontrib>Stünitz, H.</creatorcontrib><creatorcontrib>Raimbourg, H.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Précigout, J.</creatorcontrib><creatorcontrib>Pongrac, P.</creatorcontrib><creatorcontrib>Jeřábek, P.</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nègre, L.</au><au>Stünitz, H.</au><au>Raimbourg, H.</au><au>Lee, A.</au><au>Précigout, J.</au><au>Pongrac, P.</au><au>Jeřábek, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</atitle><jtitle>Journal of structural geology</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>148</volume><spage>104351</spage><pages>104351-</pages><artnum>104351</artnum><issn>0191-8141</issn><issn>1873-1201</issn><eissn>1873-1201</eissn><abstract>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies. •Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsg.2021.104351</doi><orcidid>https://orcid.org/0000-0001-6387-9890</orcidid><orcidid>https://orcid.org/0000-0002-7557-7782</orcidid><orcidid>https://orcid.org/0000-0002-0530-376X</orcidid><orcidid>https://orcid.org/0000-0001-8411-4117</orcidid><orcidid>https://orcid.org/0000-0002-9160-0989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-8141
ispartof Journal of structural geology, 2021-07, Vol.148, p.104351, Article 104351
issn 0191-8141
1873-1201
1873-1201
language eng
recordid cdi_hal_primary_oai_HAL_insu_03201529v1
source NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
subjects Dynamic recrystallization
Earth Sciences
Geofag: 450
Geosciences: 450
H2O weakening
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Mineralogi, petrologi, geokjemi: 462
Mineralogy, petrology, geochemistry: 462
Quartz deformation
Quartz rheology
Sciences of the Universe
VDP
title Effect of pressure on the deformation of quartz aggregates in the presence of H2O
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pressure%20on%20the%20deformation%20of%20quartz%20aggregates%20in%20the%20presence%20of%20H2O&rft.jtitle=Journal%20of%20structural%20geology&rft.au=N%C3%A8gre,%20L.&rft.date=2021-07-01&rft.volume=148&rft.spage=104351&rft.pages=104351-&rft.artnum=104351&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/j.jsg.2021.104351&rft_dat=%3Celsevier_hal_p%3ES0191814121000754%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0191814121000754&rfr_iscdi=true