Effect of pressure on the deformation of quartz aggregates in the presence of H2O
Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed domi...
Gespeichert in:
Veröffentlicht in: | Journal of structural geology 2021-07, Vol.148, p.104351, Article 104351 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104351 |
container_title | Journal of structural geology |
container_volume | 148 |
creator | Nègre, L. Stünitz, H. Raimbourg, H. Lee, A. Précigout, J. Pongrac, P. Jeřábek, P. |
description | Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies.
•Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress. |
doi_str_mv | 10.1016/j.jsg.2021.104351 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03201529v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814121000754</els_id><sourcerecordid>S0191814121000754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wJN7FrZmkv1o8FRKtUKhCHoOaTLZZml3a7It6K83y6pHTzPDPO_APITcAp0AheKhntShmjDKIM4Zz-GMjGBa8hQYhXMyoiAgnUIGl-QqhJrGTA7ZiLwurEXdJa1NDh5DOHpM2ibptpgYtK3fq87FOa4_jsp3X4mqKo-V6jAkbuD6HDYae2jJ1tfkwqpdwJufOibvT4u3-TJdrZ9f5rNVqrkQXVqgsTrLNEXOGW6QI53mIufMWrZhptAlt5llRsSOFUYANVRtRAa0KMspzfmY3A93t2onD97tlf-UrXJyOVtJ14SjpDz-njNxggjfDbD2LnSukU3rlQRKeSkZlMAiAb9EG4JH-3cTqOwVy1pGxbJXLAfFMfM4ZDD-eXLoZdCuV2Gcj1Klad0_6W9CjYEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</creator><creatorcontrib>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</creatorcontrib><description>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies.
•Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</description><identifier>ISSN: 0191-8141</identifier><identifier>ISSN: 1873-1201</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/j.jsg.2021.104351</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dynamic recrystallization ; Earth Sciences ; Geofag: 450 ; Geosciences: 450 ; H2O weakening ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Mineralogi, petrologi, geokjemi: 462 ; Mineralogy, petrology, geochemistry: 462 ; Quartz deformation ; Quartz rheology ; Sciences of the Universe ; VDP</subject><ispartof>Journal of structural geology, 2021-07, Vol.148, p.104351, Article 104351</ispartof><rights>2021 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</citedby><cites>FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</cites><orcidid>0000-0001-6387-9890 ; 0000-0002-7557-7782 ; 0000-0002-0530-376X ; 0000-0001-8411-4117 ; 0000-0002-9160-0989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsg.2021.104351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03201529$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nègre, L.</creatorcontrib><creatorcontrib>Stünitz, H.</creatorcontrib><creatorcontrib>Raimbourg, H.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Précigout, J.</creatorcontrib><creatorcontrib>Pongrac, P.</creatorcontrib><creatorcontrib>Jeřábek, P.</creatorcontrib><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><title>Journal of structural geology</title><description>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies.
•Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</description><subject>Dynamic recrystallization</subject><subject>Earth Sciences</subject><subject>Geofag: 450</subject><subject>Geosciences: 450</subject><subject>H2O weakening</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Mineralogi, petrologi, geokjemi: 462</subject><subject>Mineralogy, petrology, geochemistry: 462</subject><subject>Quartz deformation</subject><subject>Quartz rheology</subject><subject>Sciences of the Universe</subject><subject>VDP</subject><issn>0191-8141</issn><issn>1873-1201</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wJN7FrZmkv1o8FRKtUKhCHoOaTLZZml3a7It6K83y6pHTzPDPO_APITcAp0AheKhntShmjDKIM4Zz-GMjGBa8hQYhXMyoiAgnUIGl-QqhJrGTA7ZiLwurEXdJa1NDh5DOHpM2ibptpgYtK3fq87FOa4_jsp3X4mqKo-V6jAkbuD6HDYae2jJ1tfkwqpdwJufOibvT4u3-TJdrZ9f5rNVqrkQXVqgsTrLNEXOGW6QI53mIufMWrZhptAlt5llRsSOFUYANVRtRAa0KMspzfmY3A93t2onD97tlf-UrXJyOVtJ14SjpDz-njNxggjfDbD2LnSukU3rlQRKeSkZlMAiAb9EG4JH-3cTqOwVy1pGxbJXLAfFMfM4ZDD-eXLoZdCuV2Gcj1Klad0_6W9CjYEQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nègre, L.</creator><creator>Stünitz, H.</creator><creator>Raimbourg, H.</creator><creator>Lee, A.</creator><creator>Précigout, J.</creator><creator>Pongrac, P.</creator><creator>Jeřábek, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6387-9890</orcidid><orcidid>https://orcid.org/0000-0002-7557-7782</orcidid><orcidid>https://orcid.org/0000-0002-0530-376X</orcidid><orcidid>https://orcid.org/0000-0001-8411-4117</orcidid><orcidid>https://orcid.org/0000-0002-9160-0989</orcidid></search><sort><creationdate>20210701</creationdate><title>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</title><author>Nègre, L. ; Stünitz, H. ; Raimbourg, H. ; Lee, A. ; Précigout, J. ; Pongrac, P. ; Jeřábek, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-6edfc44c0e332ebe3e0859532ff2b2d6c73f4f2d96c726d910d0ab94106778053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic recrystallization</topic><topic>Earth Sciences</topic><topic>Geofag: 450</topic><topic>Geosciences: 450</topic><topic>H2O weakening</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Mineralogi, petrologi, geokjemi: 462</topic><topic>Mineralogy, petrology, geochemistry: 462</topic><topic>Quartz deformation</topic><topic>Quartz rheology</topic><topic>Sciences of the Universe</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nègre, L.</creatorcontrib><creatorcontrib>Stünitz, H.</creatorcontrib><creatorcontrib>Raimbourg, H.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Précigout, J.</creatorcontrib><creatorcontrib>Pongrac, P.</creatorcontrib><creatorcontrib>Jeřábek, P.</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nègre, L.</au><au>Stünitz, H.</au><au>Raimbourg, H.</au><au>Lee, A.</au><au>Précigout, J.</au><au>Pongrac, P.</au><au>Jeřábek, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pressure on the deformation of quartz aggregates in the presence of H2O</atitle><jtitle>Journal of structural geology</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>148</volume><spage>104351</spage><pages>104351-</pages><artnum>104351</artnum><issn>0191-8141</issn><issn>1873-1201</issn><eissn>1873-1201</eissn><abstract>Quartzite samples of high purity with a grain size of ~200 μm have been experimentally deformed by coaxial shortening in a solid medium apparatus at 900 °C and at confining pressures ranging from 0.6 to 2 GPa. Most samples have been shortened by ~30% with 0.1 wt% added H2O. The samples deformed dominantly by crystal plasticity (dislocation creep), and there is a systematic decrease of flow stress with increasing confining pressure. Strain rate stepping tests yield stress exponents of n ≈ 1.4. The strain determined from individual grain shapes matches that determined from bulk shortening. In addition to plastic strain, mode I cracks developed in all samples, principally in the grain boundary regions. Recrystallized material, visible through cathodoluminescence colours, forms by two mechanisms: (1) progressive subgrain rotation and (2) cracking, nucleating small new grains. After high-angle boundaries have been established, grain boundary migration takes place, and a distinction of new grains nucleation origin (subgrain rotation or cracking) is impossible. At higher pressure, there is more recrystallized material forming in the deformed samples, and it is inferred that the inverse pressure dependence of flow stress is caused by enhanced grain boundary migration at higher pressure, consistent with previous studies.
•Inverse pressure dependence of flow stress in experimentally deformed quartzite.•Bulk strain is accommodated by grain crystal plasticity.•Recrystallization results from combined subgrain rotation and mode I cracking.•Recrystallization processes are discriminated using cathodoluminescence of quartz.•Pressure enhances grain boundary migration and reduces flow stress.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsg.2021.104351</doi><orcidid>https://orcid.org/0000-0001-6387-9890</orcidid><orcidid>https://orcid.org/0000-0002-7557-7782</orcidid><orcidid>https://orcid.org/0000-0002-0530-376X</orcidid><orcidid>https://orcid.org/0000-0001-8411-4117</orcidid><orcidid>https://orcid.org/0000-0002-9160-0989</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-8141 |
ispartof | Journal of structural geology, 2021-07, Vol.148, p.104351, Article 104351 |
issn | 0191-8141 1873-1201 1873-1201 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03201529v1 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals |
subjects | Dynamic recrystallization Earth Sciences Geofag: 450 Geosciences: 450 H2O weakening Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Mineralogi, petrologi, geokjemi: 462 Mineralogy, petrology, geochemistry: 462 Quartz deformation Quartz rheology Sciences of the Universe VDP |
title | Effect of pressure on the deformation of quartz aggregates in the presence of H2O |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pressure%20on%20the%20deformation%20of%20quartz%20aggregates%20in%20the%20presence%20of%20H2O&rft.jtitle=Journal%20of%20structural%20geology&rft.au=N%C3%A8gre,%20L.&rft.date=2021-07-01&rft.volume=148&rft.spage=104351&rft.pages=104351-&rft.artnum=104351&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/j.jsg.2021.104351&rft_dat=%3Celsevier_hal_p%3ES0191814121000754%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0191814121000754&rfr_iscdi=true |