Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder
In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity $\nu$ that occurs during linear spin-down in a cylindrical container of radius $L$ and height $H$, rotating rapidly (an...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-05, Vol.915, Article A53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 915 |
creator | Oruba, L. Soward, A.M. Dormy, E. |
description | In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity $\nu$ that occurs during linear spin-down in a cylindrical container of radius $L$ and height $H$, rotating rapidly (angular velocity $\varOmega$) about its axis of symmetry subject to mixed rigid and stress-free boundary conditions for the case $L=H$. Direct numerical simulation (DNS) of the linear system at large $L= 10 H$ and Ekman number $E\leqslant \nu /H^2\varOmega =10^{-3}$ by Oruba et al. (J. Fluid Mech., vol. 888, 2020, p. 44) reveals significant inertial wave activity on the spin-down time scale. That analytic study, for $E\ll 1$, builds on the results of Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite plane layer $L\to \infty$. At large but finite distance from the symmetry axis, the meridional (QG-)flow, that causes the QG-spin-down, is blocked by the lateral boundary, which provides the primary QG-trigger for inertial wave generation. For the laterally unbounded layer, Greenspan and Howard identified, in addition to the QG-flow, inertial waves of maximum frequency (MF) $2\varOmega$, which are a manifestation of the transient Ekman layer. The blocking of these additional MF-waves by the lateral boundary provides an extra trigger that complements the QG-triggered inertial waves. Here we obtain analytic results for the full wave activity caused by the combined trigger ($\text {QG}+\text {MF}$) that faithfully capture their true character. |
doi_str_mv | 10.1017/jfm.2020.1183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03175544v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_1183</cupid><sourcerecordid>2501221053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a94402b8f599ea86fbe553b0c96afa8e7bb39ac334c7c415e2be07a7fa702f173</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFaP3he8CWlnv7rNsRS1hYIH9bxMkk27Jd3E3bQl_96UFr14GoZ53pfhIeSRwYgB0-NtuRtx4P3GpuKKDJicpImeSHVNBgCcJ4xxuCV3MW4BmIBUD8jH0tvQOqzoEQ-WYt66g2s7WuyD82saG-eToj566jxFGrBxRdXRULfYnu6N9b6jcYONLWjeVc4XNtyTmxKraB8uc0i-Xl8-54tk9f62nM9WSS5BtQmmUgLPpqVKU4vTSZlZpUQGeTrBEqdWZ5lIMRdC5jqXTFmeWdCoS9TAS6bFkDyfezdYmSa4HYbO1OjMYrYyzse9AcG0UlIeWA8_neEm1N97G1uzrffB9_8ZroBxzkCJnkrOVB7qGIMtf3sZmJNk00s2J8nmJLnnxxced1lwxdr-1f6f-AHL9n7d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501221053</pqid></control><display><type>article</type><title>Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder</title><source>Cambridge University Press Journals Complete</source><creator>Oruba, L. ; Soward, A.M. ; Dormy, E.</creator><creatorcontrib>Oruba, L. ; Soward, A.M. ; Dormy, E.</creatorcontrib><description>In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity $\nu$ that occurs during linear spin-down in a cylindrical container of radius $L$ and height $H$, rotating rapidly (angular velocity $\varOmega$) about its axis of symmetry subject to mixed rigid and stress-free boundary conditions for the case $L=H$. Direct numerical simulation (DNS) of the linear system at large $L= 10 H$ and Ekman number $E\leqslant \nu /H^2\varOmega =10^{-3}$ by Oruba et al. (J. Fluid Mech., vol. 888, 2020, p. 44) reveals significant inertial wave activity on the spin-down time scale. That analytic study, for $E\ll 1$, builds on the results of Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite plane layer $L\to \infty$. At large but finite distance from the symmetry axis, the meridional (QG-)flow, that causes the QG-spin-down, is blocked by the lateral boundary, which provides the primary QG-trigger for inertial wave generation. For the laterally unbounded layer, Greenspan and Howard identified, in addition to the QG-flow, inertial waves of maximum frequency (MF) $2\varOmega$, which are a manifestation of the transient Ekman layer. The blocking of these additional MF-waves by the lateral boundary provides an extra trigger that complements the QG-triggered inertial waves. Here we obtain analytic results for the full wave activity caused by the combined trigger ($\text {QG}+\text {MF}$) that faithfully capture their true character.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.1183</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Angular velocity ; Boundary conditions ; Cyclones ; Cylinders ; Direct numerical simulation ; Ekman layer ; Fluid mechanics ; Free boundaries ; Inertial waves ; JFM Papers ; Laplace transforms ; Mathematical models ; Mechanics ; Physics ; Rotating cylinders ; Rotation ; Symmetry ; Velocity ; Viscosity ; Vortices ; Wave generation</subject><ispartof>Journal of fluid mechanics, 2021-05, Vol.915, Article A53</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-a94402b8f599ea86fbe553b0c96afa8e7bb39ac334c7c415e2be07a7fa702f173</cites><orcidid>0000-0002-9683-6173 ; 0000-0001-5536-5718 ; 0000-0003-0230-8634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020011830/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03175544$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oruba, L.</creatorcontrib><creatorcontrib>Soward, A.M.</creatorcontrib><creatorcontrib>Dormy, E.</creatorcontrib><title>Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity $\nu$ that occurs during linear spin-down in a cylindrical container of radius $L$ and height $H$, rotating rapidly (angular velocity $\varOmega$) about its axis of symmetry subject to mixed rigid and stress-free boundary conditions for the case $L=H$. Direct numerical simulation (DNS) of the linear system at large $L= 10 H$ and Ekman number $E\leqslant \nu /H^2\varOmega =10^{-3}$ by Oruba et al. (J. Fluid Mech., vol. 888, 2020, p. 44) reveals significant inertial wave activity on the spin-down time scale. That analytic study, for $E\ll 1$, builds on the results of Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite plane layer $L\to \infty$. At large but finite distance from the symmetry axis, the meridional (QG-)flow, that causes the QG-spin-down, is blocked by the lateral boundary, which provides the primary QG-trigger for inertial wave generation. For the laterally unbounded layer, Greenspan and Howard identified, in addition to the QG-flow, inertial waves of maximum frequency (MF) $2\varOmega$, which are a manifestation of the transient Ekman layer. The blocking of these additional MF-waves by the lateral boundary provides an extra trigger that complements the QG-triggered inertial waves. Here we obtain analytic results for the full wave activity caused by the combined trigger ($\text {QG}+\text {MF}$) that faithfully capture their true character.</description><subject>Angular velocity</subject><subject>Boundary conditions</subject><subject>Cyclones</subject><subject>Cylinders</subject><subject>Direct numerical simulation</subject><subject>Ekman layer</subject><subject>Fluid mechanics</subject><subject>Free boundaries</subject><subject>Inertial waves</subject><subject>JFM Papers</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Rotating cylinders</subject><subject>Rotation</subject><subject>Symmetry</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><subject>Wave generation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQhhdRsFaP3he8CWlnv7rNsRS1hYIH9bxMkk27Jd3E3bQl_96UFr14GoZ53pfhIeSRwYgB0-NtuRtx4P3GpuKKDJicpImeSHVNBgCcJ4xxuCV3MW4BmIBUD8jH0tvQOqzoEQ-WYt66g2s7WuyD82saG-eToj566jxFGrBxRdXRULfYnu6N9b6jcYONLWjeVc4XNtyTmxKraB8uc0i-Xl8-54tk9f62nM9WSS5BtQmmUgLPpqVKU4vTSZlZpUQGeTrBEqdWZ5lIMRdC5jqXTFmeWdCoS9TAS6bFkDyfezdYmSa4HYbO1OjMYrYyzse9AcG0UlIeWA8_neEm1N97G1uzrffB9_8ZroBxzkCJnkrOVB7qGIMtf3sZmJNk00s2J8nmJLnnxxced1lwxdr-1f6f-AHL9n7d</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Oruba, L.</creator><creator>Soward, A.M.</creator><creator>Dormy, E.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9683-6173</orcidid><orcidid>https://orcid.org/0000-0001-5536-5718</orcidid><orcidid>https://orcid.org/0000-0003-0230-8634</orcidid></search><sort><creationdate>20210525</creationdate><title>Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder</title><author>Oruba, L. ; Soward, A.M. ; Dormy, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a94402b8f599ea86fbe553b0c96afa8e7bb39ac334c7c415e2be07a7fa702f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Boundary conditions</topic><topic>Cyclones</topic><topic>Cylinders</topic><topic>Direct numerical simulation</topic><topic>Ekman layer</topic><topic>Fluid mechanics</topic><topic>Free boundaries</topic><topic>Inertial waves</topic><topic>JFM Papers</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Rotating cylinders</topic><topic>Rotation</topic><topic>Symmetry</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><topic>Wave generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oruba, L.</creatorcontrib><creatorcontrib>Soward, A.M.</creatorcontrib><creatorcontrib>Dormy, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oruba, L.</au><au>Soward, A.M.</au><au>Dormy, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-05-25</date><risdate>2021</risdate><volume>915</volume><artnum>A53</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity $\nu$ that occurs during linear spin-down in a cylindrical container of radius $L$ and height $H$, rotating rapidly (angular velocity $\varOmega$) about its axis of symmetry subject to mixed rigid and stress-free boundary conditions for the case $L=H$. Direct numerical simulation (DNS) of the linear system at large $L= 10 H$ and Ekman number $E\leqslant \nu /H^2\varOmega =10^{-3}$ by Oruba et al. (J. Fluid Mech., vol. 888, 2020, p. 44) reveals significant inertial wave activity on the spin-down time scale. That analytic study, for $E\ll 1$, builds on the results of Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite plane layer $L\to \infty$. At large but finite distance from the symmetry axis, the meridional (QG-)flow, that causes the QG-spin-down, is blocked by the lateral boundary, which provides the primary QG-trigger for inertial wave generation. For the laterally unbounded layer, Greenspan and Howard identified, in addition to the QG-flow, inertial waves of maximum frequency (MF) $2\varOmega$, which are a manifestation of the transient Ekman layer. The blocking of these additional MF-waves by the lateral boundary provides an extra trigger that complements the QG-triggered inertial waves. Here we obtain analytic results for the full wave activity caused by the combined trigger ($\text {QG}+\text {MF}$) that faithfully capture their true character.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.1183</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-9683-6173</orcidid><orcidid>https://orcid.org/0000-0001-5536-5718</orcidid><orcidid>https://orcid.org/0000-0003-0230-8634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-05, Vol.915, Article A53 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03175544v1 |
source | Cambridge University Press Journals Complete |
subjects | Angular velocity Boundary conditions Cyclones Cylinders Direct numerical simulation Ekman layer Fluid mechanics Free boundaries Inertial waves JFM Papers Laplace transforms Mathematical models Mechanics Physics Rotating cylinders Rotation Symmetry Velocity Viscosity Vortices Wave generation |
title | Inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20wave%20activity%20during%20spin-down%20in%20a%20rapidly%20rotating%20penny%20shaped%20cylinder&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Oruba,%20L.&rft.date=2021-05-25&rft.volume=915&rft.artnum=A53&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.1183&rft_dat=%3Cproquest_hal_p%3E2501221053%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501221053&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_1183&rfr_iscdi=true |