Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens

Ozone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O3 budget in a changing climate is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2007-03, Vol.112 (D5), p.n/a
Hauptverfasser: Konopka, Paul, Engel, Andreas, Funke, Bernd, Müller, Rolf, Grooß, Jens-Uwe, Günther, Gebhard, Wetter, Thomas, Stiller, Gabriele, von Clarmann, Thomas, Glatthor, Norbert, Oelhaf, Hermann, Wetzel, Gerald, López-Puertas, Manuel, Pirre, Michel, Huret, Nathalie, Riese, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D5
container_start_page
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 112
creator Konopka, Paul
Engel, Andreas
Funke, Bernd
Müller, Rolf
Grooß, Jens-Uwe
Günther, Gebhard
Wetter, Thomas
Stiller, Gabriele
von Clarmann, Thomas
Glatthor, Norbert
Oelhaf, Hermann
Wetzel, Gerald
López-Puertas, Manuel
Pirre, Michel
Huret, Nathalie
Riese, Martin
description Ozone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O3 budget in a changing climate is not well quantified. Here we combine satellite measurements and model simulations to diagnose the accumulated O3 loss during winter and spring 2002–2003 in the Arctic polar stratosphere. We show that in a winter stratosphere strongly disturbed by warmings, O3 loss processes driven by halogens and NOx can significantly overlap within the polar column and become comparable in magnitude even if a significant, halogen‐induced O3 loss has occurred. Whereas, until the beginning of March 2003, polar column O3 loss was mainly caused by the halogen chemistry within the vortex at an altitude around 18 km, the chemical O3 destruction in March and April was dominated by the NOx chemistry in O3‐rich air masses transported from the subtropics and mixed with the polar air above the region affected by the halogens. This NOx‐related O3 loss started around mid‐December 2002 in subtropical air masses above 30 km that moved poleward after the major warming in January, descended to 22 km with an increasing magnitude of O3 loss and reached surprisingly high values of up to 50% local loss around the end of April. To some extent, the NOx‐driven O3 loss was enhanced by mesospheric air trapped in the vortex at the beginning of the winter as a layer of few km in the vertical and transported downward within the vortex. The effect of NOx transported from the subtropics dominated the O3 loss processes in the polar stratosphere in spring 2003, both relative to the effect of the halogens and relative to the contribution of the mesospheric NOx sources. A comparison with the 1999/2000 Arctic winter and with the Antarctic vortex split event in 2002 shows that wave events triggered by stratospheric warmings may significantly enhance O3 loss driven by NOx when O3‐ and NOx‐rich air masses from the subtropics are transported poleward and are mixed with the vortex air.
doi_str_mv 10.1029/2006JD007064
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02878944v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19595660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4515-935f2815f37b621060040554d7ca18dc67d88dc04c7058910d5a5e4b6bd2e96b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEqvSGz_AFzggAmPHH_GxasuWatWqCMTRcpxJ1pBNFjvb7fLr8SpV4YQv48PzPjOaIeQ1gw8MuPnIAdT1BYAGJZ6RBWdSFZwDf04WwERVAOf6JTlN6QfkJ6QSwBZke_t7HJD2Y0q0ieEeB1of6BCmOHb5Pz6EBhN1Q0OnGLoOIzZHIE3RTWParjEGT_cubsLQJepdjuymPYZuTac1Umxb9BMdW7p2_dGYXpEXresTnj7WE_Lt0-XX86tidbv8fH62KryQTBamlC2vmGxLXSvOQOWRQUrRaO9Y1XilmyoXEF6DrAyDRjqJolZ1w9Goujwh72Zvbmy3MWxcPNjRBXt1trJhSDsLvNKVEeKeZfjtDG_j-GuHabKbkDz2vRtw3CXLjDRSKcjg-xn0MW8sYvukZmCPZ7D_niHjbx69LnnXt9ENPqS_mUoLzkuTuXLm9qHHw3-d9nr55YJxAzKnijkV0oQPTykXf1qlSy3t95ul5VrdCXNzZ0X5B4kIpDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19595660</pqid></control><display><type>article</type><title>Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Konopka, Paul ; Engel, Andreas ; Funke, Bernd ; Müller, Rolf ; Grooß, Jens-Uwe ; Günther, Gebhard ; Wetter, Thomas ; Stiller, Gabriele ; von Clarmann, Thomas ; Glatthor, Norbert ; Oelhaf, Hermann ; Wetzel, Gerald ; López-Puertas, Manuel ; Pirre, Michel ; Huret, Nathalie ; Riese, Martin</creator><creatorcontrib>Konopka, Paul ; Engel, Andreas ; Funke, Bernd ; Müller, Rolf ; Grooß, Jens-Uwe ; Günther, Gebhard ; Wetter, Thomas ; Stiller, Gabriele ; von Clarmann, Thomas ; Glatthor, Norbert ; Oelhaf, Hermann ; Wetzel, Gerald ; López-Puertas, Manuel ; Pirre, Michel ; Huret, Nathalie ; Riese, Martin</creatorcontrib><description>Ozone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O3 budget in a changing climate is not well quantified. Here we combine satellite measurements and model simulations to diagnose the accumulated O3 loss during winter and spring 2002–2003 in the Arctic polar stratosphere. We show that in a winter stratosphere strongly disturbed by warmings, O3 loss processes driven by halogens and NOx can significantly overlap within the polar column and become comparable in magnitude even if a significant, halogen‐induced O3 loss has occurred. Whereas, until the beginning of March 2003, polar column O3 loss was mainly caused by the halogen chemistry within the vortex at an altitude around 18 km, the chemical O3 destruction in March and April was dominated by the NOx chemistry in O3‐rich air masses transported from the subtropics and mixed with the polar air above the region affected by the halogens. This NOx‐related O3 loss started around mid‐December 2002 in subtropical air masses above 30 km that moved poleward after the major warming in January, descended to 22 km with an increasing magnitude of O3 loss and reached surprisingly high values of up to 50% local loss around the end of April. To some extent, the NOx‐driven O3 loss was enhanced by mesospheric air trapped in the vortex at the beginning of the winter as a layer of few km in the vertical and transported downward within the vortex. The effect of NOx transported from the subtropics dominated the O3 loss processes in the polar stratosphere in spring 2003, both relative to the effect of the halogens and relative to the contribution of the mesospheric NOx sources. A comparison with the 1999/2000 Arctic winter and with the Antarctic vortex split event in 2002 shows that wave events triggered by stratospheric warmings may significantly enhance O3 loss driven by NOx when O3‐ and NOx‐rich air masses from the subtropics are transported poleward and are mixed with the vortex air.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2006JD007064</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; ozone loss ; Physics ; polar stratosphere ; polar vortex ; Sciences of the Universe</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2007-03, Vol.112 (D5), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4515-935f2815f37b621060040554d7ca18dc67d88dc04c7058910d5a5e4b6bd2e96b3</citedby><cites>FETCH-LOGICAL-c4515-935f2815f37b621060040554d7ca18dc67d88dc04c7058910d5a5e4b6bd2e96b3</cites><orcidid>0000-0002-9485-866X ; 0000-0003-0462-4702 ; 0000-0001-6398-6493 ; 0000-0003-2622-9148 ; 0000-0002-1042-5665 ; 0000-0003-0557-3935 ; 0000-0003-2941-7734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JD007064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JD007064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18742239$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02878944$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Konopka, Paul</creatorcontrib><creatorcontrib>Engel, Andreas</creatorcontrib><creatorcontrib>Funke, Bernd</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Grooß, Jens-Uwe</creatorcontrib><creatorcontrib>Günther, Gebhard</creatorcontrib><creatorcontrib>Wetter, Thomas</creatorcontrib><creatorcontrib>Stiller, Gabriele</creatorcontrib><creatorcontrib>von Clarmann, Thomas</creatorcontrib><creatorcontrib>Glatthor, Norbert</creatorcontrib><creatorcontrib>Oelhaf, Hermann</creatorcontrib><creatorcontrib>Wetzel, Gerald</creatorcontrib><creatorcontrib>López-Puertas, Manuel</creatorcontrib><creatorcontrib>Pirre, Michel</creatorcontrib><creatorcontrib>Huret, Nathalie</creatorcontrib><creatorcontrib>Riese, Martin</creatorcontrib><title>Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Ozone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O3 budget in a changing climate is not well quantified. Here we combine satellite measurements and model simulations to diagnose the accumulated O3 loss during winter and spring 2002–2003 in the Arctic polar stratosphere. We show that in a winter stratosphere strongly disturbed by warmings, O3 loss processes driven by halogens and NOx can significantly overlap within the polar column and become comparable in magnitude even if a significant, halogen‐induced O3 loss has occurred. Whereas, until the beginning of March 2003, polar column O3 loss was mainly caused by the halogen chemistry within the vortex at an altitude around 18 km, the chemical O3 destruction in March and April was dominated by the NOx chemistry in O3‐rich air masses transported from the subtropics and mixed with the polar air above the region affected by the halogens. This NOx‐related O3 loss started around mid‐December 2002 in subtropical air masses above 30 km that moved poleward after the major warming in January, descended to 22 km with an increasing magnitude of O3 loss and reached surprisingly high values of up to 50% local loss around the end of April. To some extent, the NOx‐driven O3 loss was enhanced by mesospheric air trapped in the vortex at the beginning of the winter as a layer of few km in the vertical and transported downward within the vortex. The effect of NOx transported from the subtropics dominated the O3 loss processes in the polar stratosphere in spring 2003, both relative to the effect of the halogens and relative to the contribution of the mesospheric NOx sources. A comparison with the 1999/2000 Arctic winter and with the Antarctic vortex split event in 2002 shows that wave events triggered by stratospheric warmings may significantly enhance O3 loss driven by NOx when O3‐ and NOx‐rich air masses from the subtropics are transported poleward and are mixed with the vortex air.</description><subject>Atmospheric and Oceanic Physics</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>ozone loss</subject><subject>Physics</subject><subject>polar stratosphere</subject><subject>polar vortex</subject><subject>Sciences of the Universe</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EEqvSGz_AFzggAmPHH_GxasuWatWqCMTRcpxJ1pBNFjvb7fLr8SpV4YQv48PzPjOaIeQ1gw8MuPnIAdT1BYAGJZ6RBWdSFZwDf04WwERVAOf6JTlN6QfkJ6QSwBZke_t7HJD2Y0q0ieEeB1of6BCmOHb5Pz6EBhN1Q0OnGLoOIzZHIE3RTWParjEGT_cubsLQJepdjuymPYZuTac1Umxb9BMdW7p2_dGYXpEXresTnj7WE_Lt0-XX86tidbv8fH62KryQTBamlC2vmGxLXSvOQOWRQUrRaO9Y1XilmyoXEF6DrAyDRjqJolZ1w9Goujwh72Zvbmy3MWxcPNjRBXt1trJhSDsLvNKVEeKeZfjtDG_j-GuHabKbkDz2vRtw3CXLjDRSKcjg-xn0MW8sYvukZmCPZ7D_niHjbx69LnnXt9ENPqS_mUoLzkuTuXLm9qHHw3-d9nr55YJxAzKnijkV0oQPTykXf1qlSy3t95ul5VrdCXNzZ0X5B4kIpDU</recordid><startdate>20070316</startdate><enddate>20070316</enddate><creator>Konopka, Paul</creator><creator>Engel, Andreas</creator><creator>Funke, Bernd</creator><creator>Müller, Rolf</creator><creator>Grooß, Jens-Uwe</creator><creator>Günther, Gebhard</creator><creator>Wetter, Thomas</creator><creator>Stiller, Gabriele</creator><creator>von Clarmann, Thomas</creator><creator>Glatthor, Norbert</creator><creator>Oelhaf, Hermann</creator><creator>Wetzel, Gerald</creator><creator>López-Puertas, Manuel</creator><creator>Pirre, Michel</creator><creator>Huret, Nathalie</creator><creator>Riese, Martin</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9485-866X</orcidid><orcidid>https://orcid.org/0000-0003-0462-4702</orcidid><orcidid>https://orcid.org/0000-0001-6398-6493</orcidid><orcidid>https://orcid.org/0000-0003-2622-9148</orcidid><orcidid>https://orcid.org/0000-0002-1042-5665</orcidid><orcidid>https://orcid.org/0000-0003-0557-3935</orcidid><orcidid>https://orcid.org/0000-0003-2941-7734</orcidid></search><sort><creationdate>20070316</creationdate><title>Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens</title><author>Konopka, Paul ; Engel, Andreas ; Funke, Bernd ; Müller, Rolf ; Grooß, Jens-Uwe ; Günther, Gebhard ; Wetter, Thomas ; Stiller, Gabriele ; von Clarmann, Thomas ; Glatthor, Norbert ; Oelhaf, Hermann ; Wetzel, Gerald ; López-Puertas, Manuel ; Pirre, Michel ; Huret, Nathalie ; Riese, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4515-935f2815f37b621060040554d7ca18dc67d88dc04c7058910d5a5e4b6bd2e96b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>ozone loss</topic><topic>Physics</topic><topic>polar stratosphere</topic><topic>polar vortex</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konopka, Paul</creatorcontrib><creatorcontrib>Engel, Andreas</creatorcontrib><creatorcontrib>Funke, Bernd</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Grooß, Jens-Uwe</creatorcontrib><creatorcontrib>Günther, Gebhard</creatorcontrib><creatorcontrib>Wetter, Thomas</creatorcontrib><creatorcontrib>Stiller, Gabriele</creatorcontrib><creatorcontrib>von Clarmann, Thomas</creatorcontrib><creatorcontrib>Glatthor, Norbert</creatorcontrib><creatorcontrib>Oelhaf, Hermann</creatorcontrib><creatorcontrib>Wetzel, Gerald</creatorcontrib><creatorcontrib>López-Puertas, Manuel</creatorcontrib><creatorcontrib>Pirre, Michel</creatorcontrib><creatorcontrib>Huret, Nathalie</creatorcontrib><creatorcontrib>Riese, Martin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konopka, Paul</au><au>Engel, Andreas</au><au>Funke, Bernd</au><au>Müller, Rolf</au><au>Grooß, Jens-Uwe</au><au>Günther, Gebhard</au><au>Wetter, Thomas</au><au>Stiller, Gabriele</au><au>von Clarmann, Thomas</au><au>Glatthor, Norbert</au><au>Oelhaf, Hermann</au><au>Wetzel, Gerald</au><au>López-Puertas, Manuel</au><au>Pirre, Michel</au><au>Huret, Nathalie</au><au>Riese, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-03-16</date><risdate>2007</risdate><volume>112</volume><issue>D5</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Ozone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O3 budget in a changing climate is not well quantified. Here we combine satellite measurements and model simulations to diagnose the accumulated O3 loss during winter and spring 2002–2003 in the Arctic polar stratosphere. We show that in a winter stratosphere strongly disturbed by warmings, O3 loss processes driven by halogens and NOx can significantly overlap within the polar column and become comparable in magnitude even if a significant, halogen‐induced O3 loss has occurred. Whereas, until the beginning of March 2003, polar column O3 loss was mainly caused by the halogen chemistry within the vortex at an altitude around 18 km, the chemical O3 destruction in March and April was dominated by the NOx chemistry in O3‐rich air masses transported from the subtropics and mixed with the polar air above the region affected by the halogens. This NOx‐related O3 loss started around mid‐December 2002 in subtropical air masses above 30 km that moved poleward after the major warming in January, descended to 22 km with an increasing magnitude of O3 loss and reached surprisingly high values of up to 50% local loss around the end of April. To some extent, the NOx‐driven O3 loss was enhanced by mesospheric air trapped in the vortex at the beginning of the winter as a layer of few km in the vertical and transported downward within the vortex. The effect of NOx transported from the subtropics dominated the O3 loss processes in the polar stratosphere in spring 2003, both relative to the effect of the halogens and relative to the contribution of the mesospheric NOx sources. A comparison with the 1999/2000 Arctic winter and with the Antarctic vortex split event in 2002 shows that wave events triggered by stratospheric warmings may significantly enhance O3 loss driven by NOx when O3‐ and NOx‐rich air masses from the subtropics are transported poleward and are mixed with the vortex air.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JD007064</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9485-866X</orcidid><orcidid>https://orcid.org/0000-0003-0462-4702</orcidid><orcidid>https://orcid.org/0000-0001-6398-6493</orcidid><orcidid>https://orcid.org/0000-0003-2622-9148</orcidid><orcidid>https://orcid.org/0000-0002-1042-5665</orcidid><orcidid>https://orcid.org/0000-0003-0557-3935</orcidid><orcidid>https://orcid.org/0000-0003-2941-7734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2007-03, Vol.112 (D5), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_insu_02878944v1
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Atmospheric and Oceanic Physics
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
ozone loss
Physics
polar stratosphere
polar vortex
Sciences of the Universe
title Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ozone%20loss%20driven%20by%20nitrogen%20oxides%20and%20triggered%20by%20stratospheric%20warmings%20can%20outweigh%20the%20effect%20of%20halogens&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Konopka,%20Paul&rft.date=2007-03-16&rft.volume=112&rft.issue=D5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JD007064&rft_dat=%3Cproquest_hal_p%3E19595660%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19595660&rft_id=info:pmid/&rfr_iscdi=true