Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements

We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2020-06, Vol.125 (6)
Hauptverfasser: Dunn, W.R., Gray, R., Wibisono, A.D., Lamy, L., Louis, C., Badman, S.V., Branduardi-Raymont, G., Elsner, R., Gladstone, Randy, Ebert, R., Ford, P., Foster, A., Tao, C., Ray, L.C., Yao, Z., Rae, I.J., Bunce, E.J., Rodriguez, P., Jackman, C.M., Nicolaou, G., Clarke, J., Nichols, J., Elliott, H., Kraft, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 125
creator Dunn, W.R.
Gray, R.
Wibisono, A.D.
Lamy, L.
Louis, C.
Badman, S.V.
Branduardi-Raymont, G.
Elsner, R.
Gladstone, Randy
Ebert, R.
Ford, P.
Foster, A.
Tao, C.
Ray, L.C.
Yao, Z.
Rae, I.J.
Bunce, E.J.
Rodriguez, P.
Jackman, C.M.
Nicolaou, G.
Clarke, J.
Nichols, J.
Elliott, H.
Kraft, R.
description We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble Space Telescope. New Horizons data revealed two corotating interaction regions (CIRs) impacted Jupiter during these observations. Non‐Io decametric bursts and UV emissions brightened together and varied in phase with the CIRs. We characterise 3 types of X‐ray aurorae: hard X‐ray bremsstrahlung main emission, pulsed/flared soft X‐ray emissions and a newly identified dim flickering (varying on short‐timescales, but quasi‐continuously present) aurora. For most observations, the X‐ray aurorae were dominated by pulsed/flaring emissions, with ion spectral lines that were best fit by Iogenic plasma. However, the brightest X‐ray aurora was coincident with a magnetosphere expansion. For this observation, the aurorae were produced by both flickering emission and erratic pulses/flares. Auroral spectral models for this observation required the addition of solar wind ions to attain good fits, suggesting solar wind entry into the outer magnetosphere or directly into the pole for this particularly bright observation. X‐ray bremsstrahlung from high energy electrons was only bright for one observation, which was during a forward shock. This bremsstrahlung was spatially coincident with bright UV main emission (power> 1TW) and X‐ray ion spectral line dusk emission, suggesting closening of upward and downward current systems during the shock. Otherwise, the bremsstrahlung was dim and UV main emission power was also lower(
doi_str_mv 10.1029/2019JA027222
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02569228v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_insu_02569228v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_insu_02569228v13</originalsourceid><addsrcrecordid>eNqVi01LAzEURYMoWGx3_oC3E4TR5NW2E3elVGqpINavXXjQSJ_MJGNextJ_7yDq3rs5l8O9Sp0afWE02kvUxi6nGieIeKB6aMa2sFcaD3_7sNTHaiDyrruUnTKjnvpYtg1nn84EXotEe5jXLMIxAGo9gXtKGfAaZrFuKLHEILDjvIWnZ6CwgQfacPz7yLe7DcWacwvrWFGCF-7UnSdpk699yNJXR29UiR_88ESd38wfZ4tiS5VrEteU9i4Su8V05ThI6zSOxhax_DTDf42_AA-4U8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Dunn, W.R. ; Gray, R. ; Wibisono, A.D. ; Lamy, L. ; Louis, C. ; Badman, S.V. ; Branduardi-Raymont, G. ; Elsner, R. ; Gladstone, Randy ; Ebert, R. ; Ford, P. ; Foster, A. ; Tao, C. ; Ray, L.C. ; Yao, Z. ; Rae, I.J. ; Bunce, E.J. ; Rodriguez, P. ; Jackman, C.M. ; Nicolaou, G. ; Clarke, J. ; Nichols, J. ; Elliott, H. ; Kraft, R.</creator><creatorcontrib>Dunn, W.R. ; Gray, R. ; Wibisono, A.D. ; Lamy, L. ; Louis, C. ; Badman, S.V. ; Branduardi-Raymont, G. ; Elsner, R. ; Gladstone, Randy ; Ebert, R. ; Ford, P. ; Foster, A. ; Tao, C. ; Ray, L.C. ; Yao, Z. ; Rae, I.J. ; Bunce, E.J. ; Rodriguez, P. ; Jackman, C.M. ; Nicolaou, G. ; Clarke, J. ; Nichols, J. ; Elliott, H. ; Kraft, R.</creatorcontrib><description>We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble Space Telescope. New Horizons data revealed two corotating interaction regions (CIRs) impacted Jupiter during these observations. Non‐Io decametric bursts and UV emissions brightened together and varied in phase with the CIRs. We characterise 3 types of X‐ray aurorae: hard X‐ray bremsstrahlung main emission, pulsed/flared soft X‐ray emissions and a newly identified dim flickering (varying on short‐timescales, but quasi‐continuously present) aurora. For most observations, the X‐ray aurorae were dominated by pulsed/flaring emissions, with ion spectral lines that were best fit by Iogenic plasma. However, the brightest X‐ray aurora was coincident with a magnetosphere expansion. For this observation, the aurorae were produced by both flickering emission and erratic pulses/flares. Auroral spectral models for this observation required the addition of solar wind ions to attain good fits, suggesting solar wind entry into the outer magnetosphere or directly into the pole for this particularly bright observation. X‐ray bremsstrahlung from high energy electrons was only bright for one observation, which was during a forward shock. This bremsstrahlung was spatially coincident with bright UV main emission (power&gt; 1TW) and X‐ray ion spectral line dusk emission, suggesting closening of upward and downward current systems during the shock. Otherwise, the bremsstrahlung was dim and UV main emission power was also lower(&lt;700 GW), suggesting their power scaled together.</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2019JA027222</identifier><language>eng</language><publisher>American Geophysical Union/Wiley</publisher><subject>Astrophysics ; Physics ; Space Physics</subject><ispartof>Journal of geophysical research. Space physics, 2020-06, Vol.125 (6)</ispartof><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0060-072X ; 0000-0002-8428-1369 ; 0000-0001-6826-2486 ; 0000-0003-0060-072X ; 0000-0001-6826-2486 ; 0000-0002-8428-1369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02569228$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, W.R.</creatorcontrib><creatorcontrib>Gray, R.</creatorcontrib><creatorcontrib>Wibisono, A.D.</creatorcontrib><creatorcontrib>Lamy, L.</creatorcontrib><creatorcontrib>Louis, C.</creatorcontrib><creatorcontrib>Badman, S.V.</creatorcontrib><creatorcontrib>Branduardi-Raymont, G.</creatorcontrib><creatorcontrib>Elsner, R.</creatorcontrib><creatorcontrib>Gladstone, Randy</creatorcontrib><creatorcontrib>Ebert, R.</creatorcontrib><creatorcontrib>Ford, P.</creatorcontrib><creatorcontrib>Foster, A.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Ray, L.C.</creatorcontrib><creatorcontrib>Yao, Z.</creatorcontrib><creatorcontrib>Rae, I.J.</creatorcontrib><creatorcontrib>Bunce, E.J.</creatorcontrib><creatorcontrib>Rodriguez, P.</creatorcontrib><creatorcontrib>Jackman, C.M.</creatorcontrib><creatorcontrib>Nicolaou, G.</creatorcontrib><creatorcontrib>Clarke, J.</creatorcontrib><creatorcontrib>Nichols, J.</creatorcontrib><creatorcontrib>Elliott, H.</creatorcontrib><creatorcontrib>Kraft, R.</creatorcontrib><title>Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements</title><title>Journal of geophysical research. Space physics</title><description>We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble Space Telescope. New Horizons data revealed two corotating interaction regions (CIRs) impacted Jupiter during these observations. Non‐Io decametric bursts and UV emissions brightened together and varied in phase with the CIRs. We characterise 3 types of X‐ray aurorae: hard X‐ray bremsstrahlung main emission, pulsed/flared soft X‐ray emissions and a newly identified dim flickering (varying on short‐timescales, but quasi‐continuously present) aurora. For most observations, the X‐ray aurorae were dominated by pulsed/flaring emissions, with ion spectral lines that were best fit by Iogenic plasma. However, the brightest X‐ray aurora was coincident with a magnetosphere expansion. For this observation, the aurorae were produced by both flickering emission and erratic pulses/flares. Auroral spectral models for this observation required the addition of solar wind ions to attain good fits, suggesting solar wind entry into the outer magnetosphere or directly into the pole for this particularly bright observation. X‐ray bremsstrahlung from high energy electrons was only bright for one observation, which was during a forward shock. This bremsstrahlung was spatially coincident with bright UV main emission (power&gt; 1TW) and X‐ray ion spectral line dusk emission, suggesting closening of upward and downward current systems during the shock. Otherwise, the bremsstrahlung was dim and UV main emission power was also lower(&lt;700 GW), suggesting their power scaled together.</description><subject>Astrophysics</subject><subject>Physics</subject><subject>Space Physics</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVi01LAzEURYMoWGx3_oC3E4TR5NW2E3elVGqpINavXXjQSJ_MJGNextJ_7yDq3rs5l8O9Sp0afWE02kvUxi6nGieIeKB6aMa2sFcaD3_7sNTHaiDyrruUnTKjnvpYtg1nn84EXotEe5jXLMIxAGo9gXtKGfAaZrFuKLHEILDjvIWnZ6CwgQfacPz7yLe7DcWacwvrWFGCF-7UnSdpk699yNJXR29UiR_88ESd38wfZ4tiS5VrEteU9i4Su8V05ThI6zSOxhax_DTDf42_AA-4U8A</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Dunn, W.R.</creator><creator>Gray, R.</creator><creator>Wibisono, A.D.</creator><creator>Lamy, L.</creator><creator>Louis, C.</creator><creator>Badman, S.V.</creator><creator>Branduardi-Raymont, G.</creator><creator>Elsner, R.</creator><creator>Gladstone, Randy</creator><creator>Ebert, R.</creator><creator>Ford, P.</creator><creator>Foster, A.</creator><creator>Tao, C.</creator><creator>Ray, L.C.</creator><creator>Yao, Z.</creator><creator>Rae, I.J.</creator><creator>Bunce, E.J.</creator><creator>Rodriguez, P.</creator><creator>Jackman, C.M.</creator><creator>Nicolaou, G.</creator><creator>Clarke, J.</creator><creator>Nichols, J.</creator><creator>Elliott, H.</creator><creator>Kraft, R.</creator><general>American Geophysical Union/Wiley</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0002-8428-1369</orcidid><orcidid>https://orcid.org/0000-0001-6826-2486</orcidid><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0001-6826-2486</orcidid><orcidid>https://orcid.org/0000-0002-8428-1369</orcidid></search><sort><creationdate>202006</creationdate><title>Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements</title><author>Dunn, W.R. ; Gray, R. ; Wibisono, A.D. ; Lamy, L. ; Louis, C. ; Badman, S.V. ; Branduardi-Raymont, G. ; Elsner, R. ; Gladstone, Randy ; Ebert, R. ; Ford, P. ; Foster, A. ; Tao, C. ; Ray, L.C. ; Yao, Z. ; Rae, I.J. ; Bunce, E.J. ; Rodriguez, P. ; Jackman, C.M. ; Nicolaou, G. ; Clarke, J. ; Nichols, J. ; Elliott, H. ; Kraft, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_insu_02569228v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Physics</topic><topic>Space Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, W.R.</creatorcontrib><creatorcontrib>Gray, R.</creatorcontrib><creatorcontrib>Wibisono, A.D.</creatorcontrib><creatorcontrib>Lamy, L.</creatorcontrib><creatorcontrib>Louis, C.</creatorcontrib><creatorcontrib>Badman, S.V.</creatorcontrib><creatorcontrib>Branduardi-Raymont, G.</creatorcontrib><creatorcontrib>Elsner, R.</creatorcontrib><creatorcontrib>Gladstone, Randy</creatorcontrib><creatorcontrib>Ebert, R.</creatorcontrib><creatorcontrib>Ford, P.</creatorcontrib><creatorcontrib>Foster, A.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Ray, L.C.</creatorcontrib><creatorcontrib>Yao, Z.</creatorcontrib><creatorcontrib>Rae, I.J.</creatorcontrib><creatorcontrib>Bunce, E.J.</creatorcontrib><creatorcontrib>Rodriguez, P.</creatorcontrib><creatorcontrib>Jackman, C.M.</creatorcontrib><creatorcontrib>Nicolaou, G.</creatorcontrib><creatorcontrib>Clarke, J.</creatorcontrib><creatorcontrib>Nichols, J.</creatorcontrib><creatorcontrib>Elliott, H.</creatorcontrib><creatorcontrib>Kraft, R.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, W.R.</au><au>Gray, R.</au><au>Wibisono, A.D.</au><au>Lamy, L.</au><au>Louis, C.</au><au>Badman, S.V.</au><au>Branduardi-Raymont, G.</au><au>Elsner, R.</au><au>Gladstone, Randy</au><au>Ebert, R.</au><au>Ford, P.</au><au>Foster, A.</au><au>Tao, C.</au><au>Ray, L.C.</au><au>Yao, Z.</au><au>Rae, I.J.</au><au>Bunce, E.J.</au><au>Rodriguez, P.</au><au>Jackman, C.M.</au><au>Nicolaou, G.</au><au>Clarke, J.</au><au>Nichols, J.</au><au>Elliott, H.</au><au>Kraft, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-06</date><risdate>2020</risdate><volume>125</volume><issue>6</issue><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble Space Telescope. New Horizons data revealed two corotating interaction regions (CIRs) impacted Jupiter during these observations. Non‐Io decametric bursts and UV emissions brightened together and varied in phase with the CIRs. We characterise 3 types of X‐ray aurorae: hard X‐ray bremsstrahlung main emission, pulsed/flared soft X‐ray emissions and a newly identified dim flickering (varying on short‐timescales, but quasi‐continuously present) aurora. For most observations, the X‐ray aurorae were dominated by pulsed/flaring emissions, with ion spectral lines that were best fit by Iogenic plasma. However, the brightest X‐ray aurora was coincident with a magnetosphere expansion. For this observation, the aurorae were produced by both flickering emission and erratic pulses/flares. Auroral spectral models for this observation required the addition of solar wind ions to attain good fits, suggesting solar wind entry into the outer magnetosphere or directly into the pole for this particularly bright observation. X‐ray bremsstrahlung from high energy electrons was only bright for one observation, which was during a forward shock. This bremsstrahlung was spatially coincident with bright UV main emission (power&gt; 1TW) and X‐ray ion spectral line dusk emission, suggesting closening of upward and downward current systems during the shock. Otherwise, the bremsstrahlung was dim and UV main emission power was also lower(&lt;700 GW), suggesting their power scaled together.</abstract><pub>American Geophysical Union/Wiley</pub><doi>10.1029/2019JA027222</doi><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0002-8428-1369</orcidid><orcidid>https://orcid.org/0000-0001-6826-2486</orcidid><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0001-6826-2486</orcidid><orcidid>https://orcid.org/0000-0002-8428-1369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2020-06, Vol.125 (6)
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_insu_02569228v1
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Astrophysics
Physics
Space Physics
title Jupiter's X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jupiter's%20X-ray%20Emission%202007%20Part%202:%20Comparisons%20with%20UV%20and%20Radio%20Emissions%20and%20In-Situ%20Solar%20Wind%20Measurements&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Dunn,%20W.R.&rft.date=2020-06&rft.volume=125&rft.issue=6&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2019JA027222&rft_dat=%3Chal%3Eoai_HAL_insu_02569228v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true