Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season

The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-01, Vol.367 (6475), p.297-300
Hauptverfasser: Fedorova, Anna A, Montmessin, Franck, Korablev, Oleg, Luginin, Mikhail, Trokhimovskiy, Alexander, Belyaev, Denis A, Ignatiev, Nikolay I, Lefèvre, Franck, Alday, Juan, Irwin, Patrick G J, Olsen, Kevin S, Bertaux, Jean-Loup, Millour, Ehouarn, Määttänen, Anni, Shakun, Alexey, Grigoriev, Alexey V, Patrakeev, Andrey, Korsa, Svyatoslav, Kokonkov, Nikita, Baggio, Lucio, Forget, Francois, Wilson, Colin F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 6475
container_start_page 297
container_title Science (American Association for the Advancement of Science)
container_volume 367
creator Fedorova, Anna A
Montmessin, Franck
Korablev, Oleg
Luginin, Mikhail
Trokhimovskiy, Alexander
Belyaev, Denis A
Ignatiev, Nikolay I
Lefèvre, Franck
Alday, Juan
Irwin, Patrick G J
Olsen, Kevin S
Bertaux, Jean-Loup
Millour, Ehouarn
Määttänen, Anni
Shakun, Alexey
Grigoriev, Alexey V
Patrakeev, Andrey
Korsa, Svyatoslav
Kokonkov, Nikita
Baggio, Lucio
Forget, Francois
Wilson, Colin F
description The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.
doi_str_mv 10.1126/science.aay9522
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02440376v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335275068</sourcerecordid><originalsourceid>FETCH-LOGICAL-a490t-9cd02aac555df5f2c51ed82be3060457db81d1afba7f4f198794e5f7c9acc2a33</originalsourceid><addsrcrecordid>eNpdkctLHEEQxpug6Go85xYavITAaD-mZ6a9iSQqbMgh5tzU9CPbsjO99kPZ_97Z7OhB6lBU1e8rqvgQ-kLJBaWsuUza21HbC4CtFIx9QgtKpKgkI_wALQjhTdWRVhyjk5QeCZlmkh-hY07lFJwsUP8nhzhs8QtkG3EY8S-I6Qo_rCw2PuXo-5L91IbR4AS5RPhfBochDyFtVjZ6PatNiX78h_NOW1Le4mQhhfEzOnSwTvZszqfo788fDzd31fL37f3N9bKCWpJcSW0IA9BCCOOEY1pQazrWW04aUovW9B01FFwPrasdlV0raytcqyVozYDzU_R9v3cFa7WJfoC4VQG8urteKj-mogira8Lb5plO8Lc9vInhqdiU1eCTtus1jDaUpBjnDRMtZWJCzz-gj6HEcXplRwnWCtJ0E3W5p3QMKUXr3k-gRO28UrNXavZqUnyd95Z-sOadfzOHvwJhLJKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335275068</pqid></control><display><type>article</type><title>Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season</title><source>American Association for the Advancement of Science</source><creator>Fedorova, Anna A ; Montmessin, Franck ; Korablev, Oleg ; Luginin, Mikhail ; Trokhimovskiy, Alexander ; Belyaev, Denis A ; Ignatiev, Nikolay I ; Lefèvre, Franck ; Alday, Juan ; Irwin, Patrick G J ; Olsen, Kevin S ; Bertaux, Jean-Loup ; Millour, Ehouarn ; Määttänen, Anni ; Shakun, Alexey ; Grigoriev, Alexey V ; Patrakeev, Andrey ; Korsa, Svyatoslav ; Kokonkov, Nikita ; Baggio, Lucio ; Forget, Francois ; Wilson, Colin F</creator><creatorcontrib>Fedorova, Anna A ; Montmessin, Franck ; Korablev, Oleg ; Luginin, Mikhail ; Trokhimovskiy, Alexander ; Belyaev, Denis A ; Ignatiev, Nikolay I ; Lefèvre, Franck ; Alday, Juan ; Irwin, Patrick G J ; Olsen, Kevin S ; Bertaux, Jean-Loup ; Millour, Ehouarn ; Määttänen, Anni ; Shakun, Alexey ; Grigoriev, Alexey V ; Patrakeev, Andrey ; Korsa, Svyatoslav ; Kokonkov, Nikita ; Baggio, Lucio ; Forget, Francois ; Wilson, Colin F</creatorcontrib><description>The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aay9522</identifier><identifier>PMID: 31919130</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Altitude ; Atmosphere ; Atmospheric chemistry ; Atmospheric water ; Dust storms ; High altitude ; High-altitude environments ; Mars ; Mars atmosphere ; Mars dust ; Mars surface ; Organic chemistry ; Perihelions ; Sciences of the Universe ; Spacecraft ; Storms ; Supersaturation ; Trace gases ; Upper atmosphere ; Water ; Water distribution ; Water engineering ; Water vapor</subject><ispartof>Science (American Association for the Advancement of Science), 2020-01, Vol.367 (6475), p.297-300</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a490t-9cd02aac555df5f2c51ed82be3060457db81d1afba7f4f198794e5f7c9acc2a33</citedby><cites>FETCH-LOGICAL-a490t-9cd02aac555df5f2c51ed82be3060457db81d1afba7f4f198794e5f7c9acc2a33</cites><orcidid>0000-0002-7616-7291 ; 0000-0001-5294-5426 ; 0000-0001-5355-1533 ; 0000-0003-1115-0656 ; 0000-0003-1331-1986 ; 0000-0003-4041-4972 ; 0000-0002-6368-787X ; 0000-0002-4176-2955 ; 0000-0003-1459-3444 ; 0000-0002-7326-8492 ; 0000-0002-6358-7094 ; 0000-0002-6478-6132 ; 0000-0002-4434-0213 ; 0000-0003-1123-5983 ; 0000-0002-9263-4937 ; 0000-0002-1960-3536 ; 0000-0002-3262-4366 ; 0000-0002-2173-9889 ; 0000-0003-4808-9203 ; 0000-0002-6772-384X ; 0000-0002-4187-1457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31919130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02440376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fedorova, Anna A</creatorcontrib><creatorcontrib>Montmessin, Franck</creatorcontrib><creatorcontrib>Korablev, Oleg</creatorcontrib><creatorcontrib>Luginin, Mikhail</creatorcontrib><creatorcontrib>Trokhimovskiy, Alexander</creatorcontrib><creatorcontrib>Belyaev, Denis A</creatorcontrib><creatorcontrib>Ignatiev, Nikolay I</creatorcontrib><creatorcontrib>Lefèvre, Franck</creatorcontrib><creatorcontrib>Alday, Juan</creatorcontrib><creatorcontrib>Irwin, Patrick G J</creatorcontrib><creatorcontrib>Olsen, Kevin S</creatorcontrib><creatorcontrib>Bertaux, Jean-Loup</creatorcontrib><creatorcontrib>Millour, Ehouarn</creatorcontrib><creatorcontrib>Määttänen, Anni</creatorcontrib><creatorcontrib>Shakun, Alexey</creatorcontrib><creatorcontrib>Grigoriev, Alexey V</creatorcontrib><creatorcontrib>Patrakeev, Andrey</creatorcontrib><creatorcontrib>Korsa, Svyatoslav</creatorcontrib><creatorcontrib>Kokonkov, Nikita</creatorcontrib><creatorcontrib>Baggio, Lucio</creatorcontrib><creatorcontrib>Forget, Francois</creatorcontrib><creatorcontrib>Wilson, Colin F</creatorcontrib><title>Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.</description><subject>Altitude</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric water</subject><subject>Dust storms</subject><subject>High altitude</subject><subject>High-altitude environments</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars dust</subject><subject>Mars surface</subject><subject>Organic chemistry</subject><subject>Perihelions</subject><subject>Sciences of the Universe</subject><subject>Spacecraft</subject><subject>Storms</subject><subject>Supersaturation</subject><subject>Trace gases</subject><subject>Upper atmosphere</subject><subject>Water</subject><subject>Water distribution</subject><subject>Water engineering</subject><subject>Water vapor</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctLHEEQxpug6Go85xYavITAaD-mZ6a9iSQqbMgh5tzU9CPbsjO99kPZ_97Z7OhB6lBU1e8rqvgQ-kLJBaWsuUza21HbC4CtFIx9QgtKpKgkI_wALQjhTdWRVhyjk5QeCZlmkh-hY07lFJwsUP8nhzhs8QtkG3EY8S-I6Qo_rCw2PuXo-5L91IbR4AS5RPhfBochDyFtVjZ6PatNiX78h_NOW1Le4mQhhfEzOnSwTvZszqfo788fDzd31fL37f3N9bKCWpJcSW0IA9BCCOOEY1pQazrWW04aUovW9B01FFwPrasdlV0raytcqyVozYDzU_R9v3cFa7WJfoC4VQG8urteKj-mogira8Lb5plO8Lc9vInhqdiU1eCTtus1jDaUpBjnDRMtZWJCzz-gj6HEcXplRwnWCtJ0E3W5p3QMKUXr3k-gRO28UrNXavZqUnyd95Z-sOadfzOHvwJhLJKM</recordid><startdate>20200117</startdate><enddate>20200117</enddate><creator>Fedorova, Anna A</creator><creator>Montmessin, Franck</creator><creator>Korablev, Oleg</creator><creator>Luginin, Mikhail</creator><creator>Trokhimovskiy, Alexander</creator><creator>Belyaev, Denis A</creator><creator>Ignatiev, Nikolay I</creator><creator>Lefèvre, Franck</creator><creator>Alday, Juan</creator><creator>Irwin, Patrick G J</creator><creator>Olsen, Kevin S</creator><creator>Bertaux, Jean-Loup</creator><creator>Millour, Ehouarn</creator><creator>Määttänen, Anni</creator><creator>Shakun, Alexey</creator><creator>Grigoriev, Alexey V</creator><creator>Patrakeev, Andrey</creator><creator>Korsa, Svyatoslav</creator><creator>Kokonkov, Nikita</creator><creator>Baggio, Lucio</creator><creator>Forget, Francois</creator><creator>Wilson, Colin F</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7616-7291</orcidid><orcidid>https://orcid.org/0000-0001-5294-5426</orcidid><orcidid>https://orcid.org/0000-0001-5355-1533</orcidid><orcidid>https://orcid.org/0000-0003-1115-0656</orcidid><orcidid>https://orcid.org/0000-0003-1331-1986</orcidid><orcidid>https://orcid.org/0000-0003-4041-4972</orcidid><orcidid>https://orcid.org/0000-0002-6368-787X</orcidid><orcidid>https://orcid.org/0000-0002-4176-2955</orcidid><orcidid>https://orcid.org/0000-0003-1459-3444</orcidid><orcidid>https://orcid.org/0000-0002-7326-8492</orcidid><orcidid>https://orcid.org/0000-0002-6358-7094</orcidid><orcidid>https://orcid.org/0000-0002-6478-6132</orcidid><orcidid>https://orcid.org/0000-0002-4434-0213</orcidid><orcidid>https://orcid.org/0000-0003-1123-5983</orcidid><orcidid>https://orcid.org/0000-0002-9263-4937</orcidid><orcidid>https://orcid.org/0000-0002-1960-3536</orcidid><orcidid>https://orcid.org/0000-0002-3262-4366</orcidid><orcidid>https://orcid.org/0000-0002-2173-9889</orcidid><orcidid>https://orcid.org/0000-0003-4808-9203</orcidid><orcidid>https://orcid.org/0000-0002-6772-384X</orcidid><orcidid>https://orcid.org/0000-0002-4187-1457</orcidid></search><sort><creationdate>20200117</creationdate><title>Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season</title><author>Fedorova, Anna A ; Montmessin, Franck ; Korablev, Oleg ; Luginin, Mikhail ; Trokhimovskiy, Alexander ; Belyaev, Denis A ; Ignatiev, Nikolay I ; Lefèvre, Franck ; Alday, Juan ; Irwin, Patrick G J ; Olsen, Kevin S ; Bertaux, Jean-Loup ; Millour, Ehouarn ; Määttänen, Anni ; Shakun, Alexey ; Grigoriev, Alexey V ; Patrakeev, Andrey ; Korsa, Svyatoslav ; Kokonkov, Nikita ; Baggio, Lucio ; Forget, Francois ; Wilson, Colin F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a490t-9cd02aac555df5f2c51ed82be3060457db81d1afba7f4f198794e5f7c9acc2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric water</topic><topic>Dust storms</topic><topic>High altitude</topic><topic>High-altitude environments</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars dust</topic><topic>Mars surface</topic><topic>Organic chemistry</topic><topic>Perihelions</topic><topic>Sciences of the Universe</topic><topic>Spacecraft</topic><topic>Storms</topic><topic>Supersaturation</topic><topic>Trace gases</topic><topic>Upper atmosphere</topic><topic>Water</topic><topic>Water distribution</topic><topic>Water engineering</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorova, Anna A</creatorcontrib><creatorcontrib>Montmessin, Franck</creatorcontrib><creatorcontrib>Korablev, Oleg</creatorcontrib><creatorcontrib>Luginin, Mikhail</creatorcontrib><creatorcontrib>Trokhimovskiy, Alexander</creatorcontrib><creatorcontrib>Belyaev, Denis A</creatorcontrib><creatorcontrib>Ignatiev, Nikolay I</creatorcontrib><creatorcontrib>Lefèvre, Franck</creatorcontrib><creatorcontrib>Alday, Juan</creatorcontrib><creatorcontrib>Irwin, Patrick G J</creatorcontrib><creatorcontrib>Olsen, Kevin S</creatorcontrib><creatorcontrib>Bertaux, Jean-Loup</creatorcontrib><creatorcontrib>Millour, Ehouarn</creatorcontrib><creatorcontrib>Määttänen, Anni</creatorcontrib><creatorcontrib>Shakun, Alexey</creatorcontrib><creatorcontrib>Grigoriev, Alexey V</creatorcontrib><creatorcontrib>Patrakeev, Andrey</creatorcontrib><creatorcontrib>Korsa, Svyatoslav</creatorcontrib><creatorcontrib>Kokonkov, Nikita</creatorcontrib><creatorcontrib>Baggio, Lucio</creatorcontrib><creatorcontrib>Forget, Francois</creatorcontrib><creatorcontrib>Wilson, Colin F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorova, Anna A</au><au>Montmessin, Franck</au><au>Korablev, Oleg</au><au>Luginin, Mikhail</au><au>Trokhimovskiy, Alexander</au><au>Belyaev, Denis A</au><au>Ignatiev, Nikolay I</au><au>Lefèvre, Franck</au><au>Alday, Juan</au><au>Irwin, Patrick G J</au><au>Olsen, Kevin S</au><au>Bertaux, Jean-Loup</au><au>Millour, Ehouarn</au><au>Määttänen, Anni</au><au>Shakun, Alexey</au><au>Grigoriev, Alexey V</au><au>Patrakeev, Andrey</au><au>Korsa, Svyatoslav</au><au>Kokonkov, Nikita</au><au>Baggio, Lucio</au><au>Forget, Francois</au><au>Wilson, Colin F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-01-17</date><risdate>2020</risdate><volume>367</volume><issue>6475</issue><spage>297</spage><epage>300</epage><pages>297-300</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>31919130</pmid><doi>10.1126/science.aay9522</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7616-7291</orcidid><orcidid>https://orcid.org/0000-0001-5294-5426</orcidid><orcidid>https://orcid.org/0000-0001-5355-1533</orcidid><orcidid>https://orcid.org/0000-0003-1115-0656</orcidid><orcidid>https://orcid.org/0000-0003-1331-1986</orcidid><orcidid>https://orcid.org/0000-0003-4041-4972</orcidid><orcidid>https://orcid.org/0000-0002-6368-787X</orcidid><orcidid>https://orcid.org/0000-0002-4176-2955</orcidid><orcidid>https://orcid.org/0000-0003-1459-3444</orcidid><orcidid>https://orcid.org/0000-0002-7326-8492</orcidid><orcidid>https://orcid.org/0000-0002-6358-7094</orcidid><orcidid>https://orcid.org/0000-0002-6478-6132</orcidid><orcidid>https://orcid.org/0000-0002-4434-0213</orcidid><orcidid>https://orcid.org/0000-0003-1123-5983</orcidid><orcidid>https://orcid.org/0000-0002-9263-4937</orcidid><orcidid>https://orcid.org/0000-0002-1960-3536</orcidid><orcidid>https://orcid.org/0000-0002-3262-4366</orcidid><orcidid>https://orcid.org/0000-0002-2173-9889</orcidid><orcidid>https://orcid.org/0000-0003-4808-9203</orcidid><orcidid>https://orcid.org/0000-0002-6772-384X</orcidid><orcidid>https://orcid.org/0000-0002-4187-1457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-01, Vol.367 (6475), p.297-300
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_insu_02440376v1
source American Association for the Advancement of Science
subjects Altitude
Atmosphere
Atmospheric chemistry
Atmospheric water
Dust storms
High altitude
High-altitude environments
Mars
Mars atmosphere
Mars dust
Mars surface
Organic chemistry
Perihelions
Sciences of the Universe
Spacecraft
Storms
Supersaturation
Trace gases
Upper atmosphere
Water
Water distribution
Water engineering
Water vapor
title Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stormy%20water%20on%20Mars:%20The%20distribution%20and%20saturation%20of%20atmospheric%20water%20during%20the%20dusty%20season&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fedorova,%20Anna%20A&rft.date=2020-01-17&rft.volume=367&rft.issue=6475&rft.spage=297&rft.epage=300&rft.pages=297-300&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aay9522&rft_dat=%3Cproquest_hal_p%3E2335275068%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335275068&rft_id=info:pmid/31919130&rfr_iscdi=true