Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)

We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of metamorphic geology 2019-09, Vol.37 (7), p.951-975
Hauptverfasser: Carvalho, Bruna B., Bartoli, Omar, Ferri, Fabio, Cesare, Bernardo, Ferrero, Silvio, Remusat, Laurent, Capizzi, Luca S., Poli, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 7
container_start_page 951
container_title Journal of metamorphic geology
container_volume 37
creator Carvalho, Bruna B.
Bartoli, Omar
Ferri, Fabio
Cesare, Bernardo
Ferrero, Silvio
Remusat, Laurent
Capizzi, Luca S.
Poli, Stefano
description We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for
doi_str_mv 10.1111/jmg.12463
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02186717v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269378424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4563-af7728a6367ec891033d23c7598fa2c0fc57fa845434d48639d04f5ccbe049153</originalsourceid><addsrcrecordid>eNp1kU1PGzEQhq2qlZpSDv0HlrhApQR_7VdvEaIQFOACQurFcr3j4GjXDraXkD_C78V024oLc5mR5pl3ZvQi9I2SGc1xvO5XM8pEyT-gCS1YMaWcio9oQljJp6JhzWf0JcY1IZQzLiboee5UgicbsXItNt1gWxxgZXvA3uB0D7gF2GDtXbIOXFId1mGI6Qe-gi3W3QARm-B73EOX3mhYl3vRehdzmZtJbaCzyWrc21Wvkk3_BhePART-5R3gw6s7vMgrdkdf0Sejugj7f_Meuv15enNyPl1eny1O5supEkV-SJmqYrUqeVmBrhtKOG8Z11XR1EYxTYwuKqNqUQguWlGXvGmJMIXWv4GIhhZ8D30fde9VJzfB9irspFdWns-X0ro4SMJoXVa0eqQZPhjhTfAP-fEk134ILt8nGSsbXtWCiUwdjZQOPsYA5r8uJfLVI5k9kn88yuzxyG5tB7v3QXlxeTZOvABiq5Le</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269378424</pqid></control><display><type>article</type><title>Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carvalho, Bruna B. ; Bartoli, Omar ; Ferri, Fabio ; Cesare, Bernardo ; Ferrero, Silvio ; Remusat, Laurent ; Capizzi, Luca S. ; Poli, Stefano</creator><creatorcontrib>Carvalho, Bruna B. ; Bartoli, Omar ; Ferri, Fabio ; Cesare, Bernardo ; Ferrero, Silvio ; Remusat, Laurent ; Capizzi, Luca S. ; Poli, Stefano</creatorcontrib><description>We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12463</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Amphibolite facies ; Amphibolites ; anatexis ; Biotite ; Breakdown ; Calcite ; Carbon dioxide ; Chlorite ; Composition ; Continental crust ; Cristobalite ; Crystallization ; Devolatilization ; Earth Sciences ; Feldspars ; Fluid inclusions ; fluid regime ; Garnet ; Geochemistry ; Hydrates ; Immiscibility ; Iron ; Isotopes ; Ivrea Zone ; Kaolinite ; Magma ; Magnesium oxide ; melt inclusions ; Melting ; Melts ; Mica ; Mineral assemblages ; Miscibility ; Muscovite ; Oxidation ; Plagioclase ; Planetology ; Pyrophyllite ; Sciences of the Universe ; Siderite ; Silicates ; Transition zone ; Tridymite</subject><ispartof>Journal of metamorphic geology, 2019-09, Vol.37 (7), p.951-975</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4563-af7728a6367ec891033d23c7598fa2c0fc57fa845434d48639d04f5ccbe049153</citedby><cites>FETCH-LOGICAL-a4563-af7728a6367ec891033d23c7598fa2c0fc57fa845434d48639d04f5ccbe049153</cites><orcidid>0000-0003-2976-3194 ; 0000-0002-9948-3676 ; 0009-0008-6423-6254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjmg.12463$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjmg.12463$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02186717$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Bruna B.</creatorcontrib><creatorcontrib>Bartoli, Omar</creatorcontrib><creatorcontrib>Ferri, Fabio</creatorcontrib><creatorcontrib>Cesare, Bernardo</creatorcontrib><creatorcontrib>Ferrero, Silvio</creatorcontrib><creatorcontrib>Remusat, Laurent</creatorcontrib><creatorcontrib>Capizzi, Luca S.</creatorcontrib><creatorcontrib>Poli, Stefano</creatorcontrib><title>Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)</title><title>Journal of metamorphic geology</title><description>We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.</description><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>anatexis</subject><subject>Biotite</subject><subject>Breakdown</subject><subject>Calcite</subject><subject>Carbon dioxide</subject><subject>Chlorite</subject><subject>Composition</subject><subject>Continental crust</subject><subject>Cristobalite</subject><subject>Crystallization</subject><subject>Devolatilization</subject><subject>Earth Sciences</subject><subject>Feldspars</subject><subject>Fluid inclusions</subject><subject>fluid regime</subject><subject>Garnet</subject><subject>Geochemistry</subject><subject>Hydrates</subject><subject>Immiscibility</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Ivrea Zone</subject><subject>Kaolinite</subject><subject>Magma</subject><subject>Magnesium oxide</subject><subject>melt inclusions</subject><subject>Melting</subject><subject>Melts</subject><subject>Mica</subject><subject>Mineral assemblages</subject><subject>Miscibility</subject><subject>Muscovite</subject><subject>Oxidation</subject><subject>Plagioclase</subject><subject>Planetology</subject><subject>Pyrophyllite</subject><subject>Sciences of the Universe</subject><subject>Siderite</subject><subject>Silicates</subject><subject>Transition zone</subject><subject>Tridymite</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PGzEQhq2qlZpSDv0HlrhApQR_7VdvEaIQFOACQurFcr3j4GjXDraXkD_C78V024oLc5mR5pl3ZvQi9I2SGc1xvO5XM8pEyT-gCS1YMaWcio9oQljJp6JhzWf0JcY1IZQzLiboee5UgicbsXItNt1gWxxgZXvA3uB0D7gF2GDtXbIOXFId1mGI6Qe-gi3W3QARm-B73EOX3mhYl3vRehdzmZtJbaCzyWrc21Wvkk3_BhePART-5R3gw6s7vMgrdkdf0Sejugj7f_Meuv15enNyPl1eny1O5supEkV-SJmqYrUqeVmBrhtKOG8Z11XR1EYxTYwuKqNqUQguWlGXvGmJMIXWv4GIhhZ8D30fde9VJzfB9irspFdWns-X0ro4SMJoXVa0eqQZPhjhTfAP-fEk134ILt8nGSsbXtWCiUwdjZQOPsYA5r8uJfLVI5k9kn88yuzxyG5tB7v3QXlxeTZOvABiq5Le</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Carvalho, Bruna B.</creator><creator>Bartoli, Omar</creator><creator>Ferri, Fabio</creator><creator>Cesare, Bernardo</creator><creator>Ferrero, Silvio</creator><creator>Remusat, Laurent</creator><creator>Capizzi, Luca S.</creator><creator>Poli, Stefano</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2976-3194</orcidid><orcidid>https://orcid.org/0000-0002-9948-3676</orcidid><orcidid>https://orcid.org/0009-0008-6423-6254</orcidid></search><sort><creationdate>201909</creationdate><title>Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)</title><author>Carvalho, Bruna B. ; Bartoli, Omar ; Ferri, Fabio ; Cesare, Bernardo ; Ferrero, Silvio ; Remusat, Laurent ; Capizzi, Luca S. ; Poli, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4563-af7728a6367ec891033d23c7598fa2c0fc57fa845434d48639d04f5ccbe049153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>anatexis</topic><topic>Biotite</topic><topic>Breakdown</topic><topic>Calcite</topic><topic>Carbon dioxide</topic><topic>Chlorite</topic><topic>Composition</topic><topic>Continental crust</topic><topic>Cristobalite</topic><topic>Crystallization</topic><topic>Devolatilization</topic><topic>Earth Sciences</topic><topic>Feldspars</topic><topic>Fluid inclusions</topic><topic>fluid regime</topic><topic>Garnet</topic><topic>Geochemistry</topic><topic>Hydrates</topic><topic>Immiscibility</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Ivrea Zone</topic><topic>Kaolinite</topic><topic>Magma</topic><topic>Magnesium oxide</topic><topic>melt inclusions</topic><topic>Melting</topic><topic>Melts</topic><topic>Mica</topic><topic>Mineral assemblages</topic><topic>Miscibility</topic><topic>Muscovite</topic><topic>Oxidation</topic><topic>Plagioclase</topic><topic>Planetology</topic><topic>Pyrophyllite</topic><topic>Sciences of the Universe</topic><topic>Siderite</topic><topic>Silicates</topic><topic>Transition zone</topic><topic>Tridymite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Bruna B.</creatorcontrib><creatorcontrib>Bartoli, Omar</creatorcontrib><creatorcontrib>Ferri, Fabio</creatorcontrib><creatorcontrib>Cesare, Bernardo</creatorcontrib><creatorcontrib>Ferrero, Silvio</creatorcontrib><creatorcontrib>Remusat, Laurent</creatorcontrib><creatorcontrib>Capizzi, Luca S.</creatorcontrib><creatorcontrib>Poli, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Bruna B.</au><au>Bartoli, Omar</au><au>Ferri, Fabio</au><au>Cesare, Bernardo</au><au>Ferrero, Silvio</au><au>Remusat, Laurent</au><au>Capizzi, Luca S.</au><au>Poli, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2019-09</date><risdate>2019</risdate><volume>37</volume><issue>7</issue><spage>951</spage><epage>975</epage><pages>951-975</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12463</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2976-3194</orcidid><orcidid>https://orcid.org/0000-0002-9948-3676</orcidid><orcidid>https://orcid.org/0009-0008-6423-6254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4929
ispartof Journal of metamorphic geology, 2019-09, Vol.37 (7), p.951-975
issn 0263-4929
1525-1314
language eng
recordid cdi_hal_primary_oai_HAL_insu_02186717v1
source Wiley Online Library Journals Frontfile Complete
subjects Amphibolite facies
Amphibolites
anatexis
Biotite
Breakdown
Calcite
Carbon dioxide
Chlorite
Composition
Continental crust
Cristobalite
Crystallization
Devolatilization
Earth Sciences
Feldspars
Fluid inclusions
fluid regime
Garnet
Geochemistry
Hydrates
Immiscibility
Iron
Isotopes
Ivrea Zone
Kaolinite
Magma
Magnesium oxide
melt inclusions
Melting
Melts
Mica
Mineral assemblages
Miscibility
Muscovite
Oxidation
Plagioclase
Planetology
Pyrophyllite
Sciences of the Universe
Siderite
Silicates
Transition zone
Tridymite
title Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatexis%20and%20fluid%20regime%20of%20the%20deep%20continental%20crust:%20New%20clues%20from%20melt%20and%20fluid%20inclusions%20in%20metapelitic%20migmatites%20from%20Ivrea%20Zone%20(NW%20Italy)&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=Carvalho,%20Bruna%20B.&rft.date=2019-09&rft.volume=37&rft.issue=7&rft.spage=951&rft.epage=975&rft.pages=951-975&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12463&rft_dat=%3Cproquest_hal_p%3E2269378424%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269378424&rft_id=info:pmid/&rfr_iscdi=true