Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23

For the first time an evaluation of the whistler rate around the Earth is performed using results from the neural network aboard the microsatellite DEMETER. It is shown that the rate of whistlers with low dispersion calculated all around the Earth as a function of longitude vary between 1 and 6 s−1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2019-05, Vol.124 (5), p.3522-3531
Hauptverfasser: Parrot, M., Pinçon, J.‐L., Shklyar, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3531
container_issue 5
container_start_page 3522
container_title Journal of geophysical research. Space physics
container_volume 124
creator Parrot, M.
Pinçon, J.‐L.
Shklyar, D.
description For the first time an evaluation of the whistler rate around the Earth is performed using results from the neural network aboard the microsatellite DEMETER. It is shown that the rate of whistlers with low dispersion calculated all around the Earth as a function of longitude vary between 1 and 6 s−1 during nighttime (22.30 LT) and between 0.5 and 0.7 s−1 during daytime (10.30 LT). The whistler rate is anticorrelated with the F10.7‐cm solar flux. A decrease by 25% of the solar flux corresponds to an increase of 62% (26%) of the averaged whistler rate calculated for the entire Earth during nighttime (daytime). Using this averaged whistler rate, the global lightning rate is estimated to be of the order of 123 s−1 (27 s−1) during nighttime (daytime). The main conclusion concerns the precipitation of the electrons in the radiation belt by interaction with the whistlers. It is shown that the decrease of the lightning activity at solar minimum (shown with the help of the Schumann resonances) is largely counterbalanced by the increase of the whistler rates in the upper part of the ionosphere due to the decrease of the ionospheric absorption. Key Points Short‐fractional hop whistler rate in the upper ionosphere is estimated for the first time with a neural network This short‐fractional hop whistler rate during nighttime is between 1 and 6 s−1 with an average value equal to 3 s−1 This short‐fractional hop whistler rate is anticorrelated with the solar flux
doi_str_mv 10.1029/2018JA026176
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02157528v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239953239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3809-9985ec93909612f24f174251b50e4cf00e7a81d37f63d1b6da389455eb1d00e73</originalsourceid><addsrcrecordid>eNp90c1OAjEQAOCN0USC3HyAJt6MaH-2u-1xgwtIMCaA8dh0d7thSaXYFgg3H8Fn9EksoMaTPbST9pvJpBNFlwjeIoj5HYaIjTKIE5QmJ1ELo4R3eQzx6U9MGDyPOs4tYFgsXCHaijbTubH-8_2jb2XpG7OUGgzNCrzMG-e1smAivQJPhVN2oypQ7ICfKzA225CSad_4daXANBitmwDv88d8lk-A9AeXLytg6kM4NVpa0NuVWgFMLqKzWmqnOt9nO3ru57PesDt-Gjz0snG3DN2GnjmjquSEQ54gXOO4RmmMKSooVHFZQ6hSyVBF0johFSqSShLGY0pVgar9I2lH18e6c6nFyjav0u6EkY0YZmPRLN1aQIxoSjHboICvjnhlzdtaOS8WZm3DjziBMeGckrAHdXNUpTXOWVX_1kVQ7Cch_k4icHLk20ar3b9WjAaTjMaMcfIFN_6IIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239953239</pqid></control><display><type>article</type><title>Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Parrot, M. ; Pinçon, J.‐L. ; Shklyar, D.</creator><creatorcontrib>Parrot, M. ; Pinçon, J.‐L. ; Shklyar, D.</creatorcontrib><description>For the first time an evaluation of the whistler rate around the Earth is performed using results from the neural network aboard the microsatellite DEMETER. It is shown that the rate of whistlers with low dispersion calculated all around the Earth as a function of longitude vary between 1 and 6 s−1 during nighttime (22.30 LT) and between 0.5 and 0.7 s−1 during daytime (10.30 LT). The whistler rate is anticorrelated with the F10.7‐cm solar flux. A decrease by 25% of the solar flux corresponds to an increase of 62% (26%) of the averaged whistler rate calculated for the entire Earth during nighttime (daytime). Using this averaged whistler rate, the global lightning rate is estimated to be of the order of 123 s−1 (27 s−1) during nighttime (daytime). The main conclusion concerns the precipitation of the electrons in the radiation belt by interaction with the whistlers. It is shown that the decrease of the lightning activity at solar minimum (shown with the help of the Schumann resonances) is largely counterbalanced by the increase of the whistler rates in the upper part of the ionosphere due to the decrease of the ionospheric absorption. Key Points Short‐fractional hop whistler rate in the upper ionosphere is estimated for the first time with a neural network This short‐fractional hop whistler rate during nighttime is between 1 and 6 s−1 with an average value equal to 3 s−1 This short‐fractional hop whistler rate is anticorrelated with the solar flux</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2018JA026176</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Daytime ; Earth ; Ionosphere ; Ionospheric absorption ; Lightning ; Lightning activity ; Low altitude ; Mathematical analysis ; Microsatellites ; neural network ; Neural networks ; Night ; O+ whistlers ; Physics ; Precipitation ; Radiation ; Satellite observation ; Schumann resonances ; Sciences of the Universe ; Solar cycle ; Solar flux ; Solar minimum ; Space Physics ; upper ionosphere ; Whistlers</subject><ispartof>Journal of geophysical research. Space physics, 2019-05, Vol.124 (5), p.3522-3531</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3809-9985ec93909612f24f174251b50e4cf00e7a81d37f63d1b6da389455eb1d00e73</citedby><cites>FETCH-LOGICAL-c3809-9985ec93909612f24f174251b50e4cf00e7a81d37f63d1b6da389455eb1d00e73</cites><orcidid>0000-0001-8626-547X ; 0000-0003-0905-5721 ; 0000-0003-1806-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JA026176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JA026176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27913,27914,45563,45564,46398,46822</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02157528$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Parrot, M.</creatorcontrib><creatorcontrib>Pinçon, J.‐L.</creatorcontrib><creatorcontrib>Shklyar, D.</creatorcontrib><title>Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23</title><title>Journal of geophysical research. Space physics</title><description>For the first time an evaluation of the whistler rate around the Earth is performed using results from the neural network aboard the microsatellite DEMETER. It is shown that the rate of whistlers with low dispersion calculated all around the Earth as a function of longitude vary between 1 and 6 s−1 during nighttime (22.30 LT) and between 0.5 and 0.7 s−1 during daytime (10.30 LT). The whistler rate is anticorrelated with the F10.7‐cm solar flux. A decrease by 25% of the solar flux corresponds to an increase of 62% (26%) of the averaged whistler rate calculated for the entire Earth during nighttime (daytime). Using this averaged whistler rate, the global lightning rate is estimated to be of the order of 123 s−1 (27 s−1) during nighttime (daytime). The main conclusion concerns the precipitation of the electrons in the radiation belt by interaction with the whistlers. It is shown that the decrease of the lightning activity at solar minimum (shown with the help of the Schumann resonances) is largely counterbalanced by the increase of the whistler rates in the upper part of the ionosphere due to the decrease of the ionospheric absorption. Key Points Short‐fractional hop whistler rate in the upper ionosphere is estimated for the first time with a neural network This short‐fractional hop whistler rate during nighttime is between 1 and 6 s−1 with an average value equal to 3 s−1 This short‐fractional hop whistler rate is anticorrelated with the solar flux</description><subject>Daytime</subject><subject>Earth</subject><subject>Ionosphere</subject><subject>Ionospheric absorption</subject><subject>Lightning</subject><subject>Lightning activity</subject><subject>Low altitude</subject><subject>Mathematical analysis</subject><subject>Microsatellites</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Night</subject><subject>O+ whistlers</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Satellite observation</subject><subject>Schumann resonances</subject><subject>Sciences of the Universe</subject><subject>Solar cycle</subject><subject>Solar flux</subject><subject>Solar minimum</subject><subject>Space Physics</subject><subject>upper ionosphere</subject><subject>Whistlers</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90c1OAjEQAOCN0USC3HyAJt6MaH-2u-1xgwtIMCaA8dh0d7thSaXYFgg3H8Fn9EksoMaTPbST9pvJpBNFlwjeIoj5HYaIjTKIE5QmJ1ELo4R3eQzx6U9MGDyPOs4tYFgsXCHaijbTubH-8_2jb2XpG7OUGgzNCrzMG-e1smAivQJPhVN2oypQ7ICfKzA225CSad_4daXANBitmwDv88d8lk-A9AeXLytg6kM4NVpa0NuVWgFMLqKzWmqnOt9nO3ru57PesDt-Gjz0snG3DN2GnjmjquSEQ54gXOO4RmmMKSooVHFZQ6hSyVBF0johFSqSShLGY0pVgar9I2lH18e6c6nFyjav0u6EkY0YZmPRLN1aQIxoSjHboICvjnhlzdtaOS8WZm3DjziBMeGckrAHdXNUpTXOWVX_1kVQ7Cch_k4icHLk20ar3b9WjAaTjMaMcfIFN_6IIw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Parrot, M.</creator><creator>Pinçon, J.‐L.</creator><creator>Shklyar, D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8626-547X</orcidid><orcidid>https://orcid.org/0000-0003-0905-5721</orcidid><orcidid>https://orcid.org/0000-0003-1806-0215</orcidid></search><sort><creationdate>201905</creationdate><title>Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23</title><author>Parrot, M. ; Pinçon, J.‐L. ; Shklyar, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3809-9985ec93909612f24f174251b50e4cf00e7a81d37f63d1b6da389455eb1d00e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Daytime</topic><topic>Earth</topic><topic>Ionosphere</topic><topic>Ionospheric absorption</topic><topic>Lightning</topic><topic>Lightning activity</topic><topic>Low altitude</topic><topic>Mathematical analysis</topic><topic>Microsatellites</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Night</topic><topic>O+ whistlers</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Satellite observation</topic><topic>Schumann resonances</topic><topic>Sciences of the Universe</topic><topic>Solar cycle</topic><topic>Solar flux</topic><topic>Solar minimum</topic><topic>Space Physics</topic><topic>upper ionosphere</topic><topic>Whistlers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrot, M.</creatorcontrib><creatorcontrib>Pinçon, J.‐L.</creatorcontrib><creatorcontrib>Shklyar, D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrot, M.</au><au>Pinçon, J.‐L.</au><au>Shklyar, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2019-05</date><risdate>2019</risdate><volume>124</volume><issue>5</issue><spage>3522</spage><epage>3531</epage><pages>3522-3531</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>For the first time an evaluation of the whistler rate around the Earth is performed using results from the neural network aboard the microsatellite DEMETER. It is shown that the rate of whistlers with low dispersion calculated all around the Earth as a function of longitude vary between 1 and 6 s−1 during nighttime (22.30 LT) and between 0.5 and 0.7 s−1 during daytime (10.30 LT). The whistler rate is anticorrelated with the F10.7‐cm solar flux. A decrease by 25% of the solar flux corresponds to an increase of 62% (26%) of the averaged whistler rate calculated for the entire Earth during nighttime (daytime). Using this averaged whistler rate, the global lightning rate is estimated to be of the order of 123 s−1 (27 s−1) during nighttime (daytime). The main conclusion concerns the precipitation of the electrons in the radiation belt by interaction with the whistlers. It is shown that the decrease of the lightning activity at solar minimum (shown with the help of the Schumann resonances) is largely counterbalanced by the increase of the whistler rates in the upper part of the ionosphere due to the decrease of the ionospheric absorption. Key Points Short‐fractional hop whistler rate in the upper ionosphere is estimated for the first time with a neural network This short‐fractional hop whistler rate during nighttime is between 1 and 6 s−1 with an average value equal to 3 s−1 This short‐fractional hop whistler rate is anticorrelated with the solar flux</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JA026176</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8626-547X</orcidid><orcidid>https://orcid.org/0000-0003-0905-5721</orcidid><orcidid>https://orcid.org/0000-0003-1806-0215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2019-05, Vol.124 (5), p.3522-3531
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_insu_02157528v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Daytime
Earth
Ionosphere
Ionospheric absorption
Lightning
Lightning activity
Low altitude
Mathematical analysis
Microsatellites
neural network
Neural networks
Night
O+ whistlers
Physics
Precipitation
Radiation
Satellite observation
Schumann resonances
Sciences of the Universe
Solar cycle
Solar flux
Solar minimum
Space Physics
upper ionosphere
Whistlers
title Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%E2%80%90Fractional%20Hop%20Whistler%20Rate%20Observed%20by%20the%20Low%E2%80%90Altitude%20Satellite%20DEMETER%20at%20the%20End%20of%20the%20Solar%20Cycle%2023&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Parrot,%20M.&rft.date=2019-05&rft.volume=124&rft.issue=5&rft.spage=3522&rft.epage=3531&rft.pages=3522-3531&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2018JA026176&rft_dat=%3Cproquest_hal_p%3E2239953239%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239953239&rft_id=info:pmid/&rfr_iscdi=true