W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils

Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2019-08, Vol.36 (8), p.1463-1476
Hauptverfasser: Protat, Alain, Rauniyar, Surendra, Delanoë, Julien, Fontaine, Emmanuel, Schwarzenboeck, Alfons
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1476
container_issue 8
container_start_page 1463
container_title Journal of atmospheric and oceanic technology
container_volume 36
creator Protat, Alain
Rauniyar, Surendra
Delanoë, Julien
Fontaine, Emmanuel
Schwarzenboeck, Alfons
description Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km −1 for reflectivities between 13 and 18 dB Z , with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km −1 for reflectivities of 20 dB Z . The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m −3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.
doi_str_mv 10.1175/JTECH-D-18-0154.1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02151487v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390142966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gLcFLyqkzuxHsjnWttpKQdCKx2Wz2WBKmtTdpKC_3tSKp4GZh3deHkIuEUaIibx7Ws0m82gaoYoApRjhERmgZBCBYPExGUDC0whkwk7JWQhrAECO8YBM3qN7U-f0OpX0cf59Q19Mbjwdt62rO9OWTU3Lmq58sy2tqehr6_tl0fgNXVhHx_WurMI5OSlMFdzF3xySt4fZqq-zfH5cTMbLyHKJbZQKm1hROKUszxEzcJkSnKeQi9gIp9L-aCFjjilpYsiUMch4nmaxkMKC4kNye8j9MJXe-nJj_JduTKnn46Uu69BpYChRqGSHPXx1gLe--excaPW66Xzd99Os_4mCpXHcU3igrG9C8K74z0XQe7H6V6yealR6L1Yj_wHzZmhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390142966</pqid></control><display><type>article</type><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</creator><creatorcontrib>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</creatorcontrib><description>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km −1 for reflectivities between 13 and 18 dB Z , with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km −1 for reflectivities of 20 dB Z . The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m −3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0154.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airborne radar ; Airborne remote sensing ; Aircraft ; Anvils ; Atmospheric and Oceanic Physics ; Atmospheric attenuation ; Attenuation ; Attenuation coefficients ; Aviation ; Cloud microphysics ; Clouds ; Experiments ; Extinction coefficient ; Ice ; Ice crystals ; Ice particles ; Microphysics ; Moisture content ; Physics ; Precipitation ; Profiles ; Radar ; Radar attenuation ; Radar observation ; Reflectance ; Remote sensing ; Statistical analysis ; Thermal expansion ; Tropical climate ; Vertical profiles ; Water content</subject><ispartof>Journal of atmospheric and oceanic technology, 2019-08, Vol.36 (8), p.1463-1476</ispartof><rights>Copyright American Meteorological Society Aug 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</citedby><cites>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</cites><orcidid>0000-0002-8933-874X ; 0000-0002-8386-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3680,27923,27924</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02151487$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Protat, Alain</creatorcontrib><creatorcontrib>Rauniyar, Surendra</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Fontaine, Emmanuel</creatorcontrib><creatorcontrib>Schwarzenboeck, Alfons</creatorcontrib><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><title>Journal of atmospheric and oceanic technology</title><description>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km −1 for reflectivities between 13 and 18 dB Z , with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km −1 for reflectivities of 20 dB Z . The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m −3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Aircraft</subject><subject>Anvils</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Atmospheric attenuation</subject><subject>Attenuation</subject><subject>Attenuation coefficients</subject><subject>Aviation</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Experiments</subject><subject>Extinction coefficient</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Ice particles</subject><subject>Microphysics</subject><subject>Moisture content</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Profiles</subject><subject>Radar</subject><subject>Radar attenuation</subject><subject>Radar observation</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Thermal expansion</subject><subject>Tropical climate</subject><subject>Vertical profiles</subject><subject>Water content</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gLcFLyqkzuxHsjnWttpKQdCKx2Wz2WBKmtTdpKC_3tSKp4GZh3deHkIuEUaIibx7Ws0m82gaoYoApRjhERmgZBCBYPExGUDC0whkwk7JWQhrAECO8YBM3qN7U-f0OpX0cf59Q19Mbjwdt62rO9OWTU3Lmq58sy2tqehr6_tl0fgNXVhHx_WurMI5OSlMFdzF3xySt4fZqq-zfH5cTMbLyHKJbZQKm1hROKUszxEzcJkSnKeQi9gIp9L-aCFjjilpYsiUMch4nmaxkMKC4kNye8j9MJXe-nJj_JduTKnn46Uu69BpYChRqGSHPXx1gLe--excaPW66Xzd99Os_4mCpXHcU3igrG9C8K74z0XQe7H6V6yealR6L1Yj_wHzZmhg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Protat, Alain</creator><creator>Rauniyar, Surendra</creator><creator>Delanoë, Julien</creator><creator>Fontaine, Emmanuel</creator><creator>Schwarzenboeck, Alfons</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-8386-5506</orcidid></search><sort><creationdate>20190801</creationdate><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><author>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Aircraft</topic><topic>Anvils</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Atmospheric attenuation</topic><topic>Attenuation</topic><topic>Attenuation coefficients</topic><topic>Aviation</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Experiments</topic><topic>Extinction coefficient</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Ice particles</topic><topic>Microphysics</topic><topic>Moisture content</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Profiles</topic><topic>Radar</topic><topic>Radar attenuation</topic><topic>Radar observation</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Thermal expansion</topic><topic>Tropical climate</topic><topic>Vertical profiles</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protat, Alain</creatorcontrib><creatorcontrib>Rauniyar, Surendra</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Fontaine, Emmanuel</creatorcontrib><creatorcontrib>Schwarzenboeck, Alfons</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protat, Alain</au><au>Rauniyar, Surendra</au><au>Delanoë, Julien</au><au>Fontaine, Emmanuel</au><au>Schwarzenboeck, Alfons</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>36</volume><issue>8</issue><spage>1463</spage><epage>1476</epage><pages>1463-1476</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km −1 for reflectivities between 13 and 18 dB Z , with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km −1 for reflectivities of 20 dB Z . The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m −3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0154.1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-8386-5506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2019-08, Vol.36 (8), p.1463-1476
issn 0739-0572
1520-0426
language eng
recordid cdi_hal_primary_oai_HAL_insu_02151487v1
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Airborne radar
Airborne remote sensing
Aircraft
Anvils
Atmospheric and Oceanic Physics
Atmospheric attenuation
Attenuation
Attenuation coefficients
Aviation
Cloud microphysics
Clouds
Experiments
Extinction coefficient
Ice
Ice crystals
Ice particles
Microphysics
Moisture content
Physics
Precipitation
Profiles
Radar
Radar attenuation
Radar observation
Reflectance
Remote sensing
Statistical analysis
Thermal expansion
Tropical climate
Vertical profiles
Water content
title W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Band%20(95%20GHz)%20Radar%20Attenuation%20in%20Tropical%20Stratiform%20Ice%20Anvils&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Protat,%20Alain&rft.date=2019-08-01&rft.volume=36&rft.issue=8&rft.spage=1463&rft.epage=1476&rft.pages=1463-1476&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0154.1&rft_dat=%3Cproquest_hal_p%3E2390142966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390142966&rft_id=info:pmid/&rfr_iscdi=true