W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two tec...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2019-08, Vol.36 (8), p.1463-1476 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1476 |
---|---|
container_issue | 8 |
container_start_page | 1463 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 36 |
creator | Protat, Alain Rauniyar, Surendra Delanoë, Julien Fontaine, Emmanuel Schwarzenboeck, Alfons |
description | Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km
−1
for reflectivities between 13 and 18 dB
Z
, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km
−1
for reflectivities of 20 dB
Z
. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m
−3
up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates. |
doi_str_mv | 10.1175/JTECH-D-18-0154.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_02151487v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390142966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gLcFLyqkzuxHsjnWttpKQdCKx2Wz2WBKmtTdpKC_3tSKp4GZh3deHkIuEUaIibx7Ws0m82gaoYoApRjhERmgZBCBYPExGUDC0whkwk7JWQhrAECO8YBM3qN7U-f0OpX0cf59Q19Mbjwdt62rO9OWTU3Lmq58sy2tqehr6_tl0fgNXVhHx_WurMI5OSlMFdzF3xySt4fZqq-zfH5cTMbLyHKJbZQKm1hROKUszxEzcJkSnKeQi9gIp9L-aCFjjilpYsiUMch4nmaxkMKC4kNye8j9MJXe-nJj_JduTKnn46Uu69BpYChRqGSHPXx1gLe--excaPW66Xzd99Os_4mCpXHcU3igrG9C8K74z0XQe7H6V6yealR6L1Yj_wHzZmhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390142966</pqid></control><display><type>article</type><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</creator><creatorcontrib>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</creatorcontrib><description>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km
−1
for reflectivities between 13 and 18 dB
Z
, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km
−1
for reflectivities of 20 dB
Z
. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m
−3
up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0154.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airborne radar ; Airborne remote sensing ; Aircraft ; Anvils ; Atmospheric and Oceanic Physics ; Atmospheric attenuation ; Attenuation ; Attenuation coefficients ; Aviation ; Cloud microphysics ; Clouds ; Experiments ; Extinction coefficient ; Ice ; Ice crystals ; Ice particles ; Microphysics ; Moisture content ; Physics ; Precipitation ; Profiles ; Radar ; Radar attenuation ; Radar observation ; Reflectance ; Remote sensing ; Statistical analysis ; Thermal expansion ; Tropical climate ; Vertical profiles ; Water content</subject><ispartof>Journal of atmospheric and oceanic technology, 2019-08, Vol.36 (8), p.1463-1476</ispartof><rights>Copyright American Meteorological Society Aug 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</citedby><cites>FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</cites><orcidid>0000-0002-8933-874X ; 0000-0002-8386-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3680,27923,27924</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02151487$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Protat, Alain</creatorcontrib><creatorcontrib>Rauniyar, Surendra</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Fontaine, Emmanuel</creatorcontrib><creatorcontrib>Schwarzenboeck, Alfons</creatorcontrib><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><title>Journal of atmospheric and oceanic technology</title><description>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km
−1
for reflectivities between 13 and 18 dB
Z
, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km
−1
for reflectivities of 20 dB
Z
. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m
−3
up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Aircraft</subject><subject>Anvils</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Atmospheric attenuation</subject><subject>Attenuation</subject><subject>Attenuation coefficients</subject><subject>Aviation</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Experiments</subject><subject>Extinction coefficient</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Ice particles</subject><subject>Microphysics</subject><subject>Moisture content</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Profiles</subject><subject>Radar</subject><subject>Radar attenuation</subject><subject>Radar observation</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Thermal expansion</subject><subject>Tropical climate</subject><subject>Vertical profiles</subject><subject>Water content</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gLcFLyqkzuxHsjnWttpKQdCKx2Wz2WBKmtTdpKC_3tSKp4GZh3deHkIuEUaIibx7Ws0m82gaoYoApRjhERmgZBCBYPExGUDC0whkwk7JWQhrAECO8YBM3qN7U-f0OpX0cf59Q19Mbjwdt62rO9OWTU3Lmq58sy2tqehr6_tl0fgNXVhHx_WurMI5OSlMFdzF3xySt4fZqq-zfH5cTMbLyHKJbZQKm1hROKUszxEzcJkSnKeQi9gIp9L-aCFjjilpYsiUMch4nmaxkMKC4kNye8j9MJXe-nJj_JduTKnn46Uu69BpYChRqGSHPXx1gLe--excaPW66Xzd99Os_4mCpXHcU3igrG9C8K74z0XQe7H6V6yealR6L1Yj_wHzZmhg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Protat, Alain</creator><creator>Rauniyar, Surendra</creator><creator>Delanoë, Julien</creator><creator>Fontaine, Emmanuel</creator><creator>Schwarzenboeck, Alfons</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-8386-5506</orcidid></search><sort><creationdate>20190801</creationdate><title>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</title><author>Protat, Alain ; Rauniyar, Surendra ; Delanoë, Julien ; Fontaine, Emmanuel ; Schwarzenboeck, Alfons</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-94c7c4fe88c3d11b0eb843390d46a4e89c4fc0b2e285a60b8aa123d9b6454c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Aircraft</topic><topic>Anvils</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Atmospheric attenuation</topic><topic>Attenuation</topic><topic>Attenuation coefficients</topic><topic>Aviation</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Experiments</topic><topic>Extinction coefficient</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Ice particles</topic><topic>Microphysics</topic><topic>Moisture content</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Profiles</topic><topic>Radar</topic><topic>Radar attenuation</topic><topic>Radar observation</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Thermal expansion</topic><topic>Tropical climate</topic><topic>Vertical profiles</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protat, Alain</creatorcontrib><creatorcontrib>Rauniyar, Surendra</creatorcontrib><creatorcontrib>Delanoë, Julien</creatorcontrib><creatorcontrib>Fontaine, Emmanuel</creatorcontrib><creatorcontrib>Schwarzenboeck, Alfons</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protat, Alain</au><au>Rauniyar, Surendra</au><au>Delanoë, Julien</au><au>Fontaine, Emmanuel</au><au>Schwarzenboeck, Alfons</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>36</volume><issue>8</issue><spage>1463</spage><epage>1476</epage><pages>1463-1476</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km
−1
for reflectivities between 13 and 18 dB
Z
, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km
−1
for reflectivities of 20 dB
Z
. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m
−3
up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0154.1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-8386-5506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2019-08, Vol.36 (8), p.1463-1476 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_02151487v1 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Airborne radar Airborne remote sensing Aircraft Anvils Atmospheric and Oceanic Physics Atmospheric attenuation Attenuation Attenuation coefficients Aviation Cloud microphysics Clouds Experiments Extinction coefficient Ice Ice crystals Ice particles Microphysics Moisture content Physics Precipitation Profiles Radar Radar attenuation Radar observation Reflectance Remote sensing Statistical analysis Thermal expansion Tropical climate Vertical profiles Water content |
title | W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Band%20(95%20GHz)%20Radar%20Attenuation%20in%20Tropical%20Stratiform%20Ice%20Anvils&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Protat,%20Alain&rft.date=2019-08-01&rft.volume=36&rft.issue=8&rft.spage=1463&rft.epage=1476&rft.pages=1463-1476&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0154.1&rft_dat=%3Cproquest_hal_p%3E2390142966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390142966&rft_id=info:pmid/&rfr_iscdi=true |