Asymmetric thermal evolution of the Moon

The Moon possesses a clear dichotomy in geological processes between the nearside and farside hemispheres. The most pronounced expressions of this dichotomy are the strong concentration of radioactive heat sources on the nearside in a region known as the Procellarum KREEP Terrane (PKT) and the mare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2013-07, Vol.118 (7), p.1435-1452
Hauptverfasser: Laneuville, M., Wieczorek, M. A., Breuer, D., Tosi, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Moon possesses a clear dichotomy in geological processes between the nearside and farside hemispheres. The most pronounced expressions of this dichotomy are the strong concentration of radioactive heat sources on the nearside in a region known as the Procellarum KREEP Terrane (PKT) and the mare basaltic lava flows that erupted in or adjacent to this terrane. We model the thermochemical evolution of the Moon using a 3‐D spherical thermochemical convection code in order to assess the consequences of a layer enriched in heat sources below the PKT on the Moon's global evolution. We find that in addition to localizing most of the melt production on the nearside, such an enriched concentration of heat sources in the PKT crust has an influence down to the core‐mantle boundary and leaves a present‐day temperature anomaly within the nearside mantle. Moderate gravitational and topographic anomalies that are predicted in the PKT, but not observed, may be masked either by crustal thinning or gravitational anomalies from dense material in the underlying mantle. Our models also predict crystallization of an inner core for sulfur concentrations less than 6 wt %. Key Points The thermochemical consequences of the PKT are consistent with the observations A thermal anomaly is present today in the mantle below the PKT Heat sources enrichment in the PKT has an influence down to the CMB
ISSN:2169-9097
2169-9100
DOI:10.1002/jgre.20103