Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges?
We present numerical models to explore possible couplings along the axis of fast‐spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end‐member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt‐ric...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2017-05, Vol.18 (5), p.1907-1925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1925 |
---|---|
container_issue | 5 |
container_start_page | 1907 |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 18 |
creator | Fontaine, Fabrice J. Rabinowicz, M. Cannat, M. |
description | We present numerical models to explore possible couplings along the axis of fast‐spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end‐member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt‐rich lower crustal along‐axis corridor and permeability k not exceeding ∼10−16 m2 in the upper crust, the hot, melt‐rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic‐hydrothermal interface settles at realistic depths for fast ridges, i.e., 1–2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer‐wide hydrothermal upflows/plumes, spaced by 8–10 km, arise on top of the magmatic upflows. Such magmatic‐hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South‐East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt‐rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ∼100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt‐rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off‐axis to produce the lower crust.
Key Points
The gabbroic magma chamber in the lower crust along the axis of fast MOR can convect as a viscous fluid
Magmatic convection controls the distribution of hydrothermal fields and the pattern of melt delivery in the AML along fast MOR
Lower crust convection offers new perspectives on the formation of the lower crust of fast MOR |
doi_str_mv | 10.1002/2016GC006737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_01731492v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909599359</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3233-880affc1f6d974211275b87d604aecd902f7efdad2387a980e00b7579089e2723</originalsourceid><addsrcrecordid>eNpNkd1O3DAQhaMKpPJ3xwNY4q7qwtjerOMrhFY0IC1CqtprazaebIy8TrCThb3rI_QZ-mg8SYMWEFczc_TpzJFOlp1yOOcA4kIAn5VzgJmS6kt2wHORTwQItfdp_5odpvQAwKd5Xhxk_-YYWONWzcufvz2tO4rYD5G-v2sNYc9qPzyzZmtj2zcU1-jZhsIoO_I2sSUxeu48ukCWLbfsnanasKGqd21gLryqzLdPFFkVh9Qz9G1YsRpTP35JXSS0bhTunB3v-4rGWD-dXVG6PM72a_SJTt7mUfb7x_Wv-c1kcV_ezq8WE5RCyklRANZ1xeuZ1WoqOBcqXxbKzmCKVFkNolZUW7RCFgp1AQSwVLnSUGgSSsij7NvOt0FvuujWGLemRWdurhbGhTQY4EryqRYbPsJnO7iL7eNAqTcP7RDDmM9wDTrXWuZ6pOSOenKeth-mHMxrX-ZzX6Ysy2vBJUj5HzLyjxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909599359</pqid></control><display><type>article</type><title>Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges?</title><source>Wiley-Blackwell Open Access Titles</source><creator>Fontaine, Fabrice J. ; Rabinowicz, M. ; Cannat, M.</creator><creatorcontrib>Fontaine, Fabrice J. ; Rabinowicz, M. ; Cannat, M.</creatorcontrib><description>We present numerical models to explore possible couplings along the axis of fast‐spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end‐member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt‐rich lower crustal along‐axis corridor and permeability k not exceeding ∼10−16 m2 in the upper crust, the hot, melt‐rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic‐hydrothermal interface settles at realistic depths for fast ridges, i.e., 1–2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer‐wide hydrothermal upflows/plumes, spaced by 8–10 km, arise on top of the magmatic upflows. Such magmatic‐hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South‐East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt‐rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ∼100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt‐rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off‐axis to produce the lower crust.
Key Points
The gabbroic magma chamber in the lower crust along the axis of fast MOR can convect as a viscous fluid
Magmatic convection controls the distribution of hydrothermal fields and the pattern of melt delivery in the AML along fast MOR
Lower crust convection offers new perspectives on the formation of the lower crust of fast MOR</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/2016GC006737</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Cells ; Cellular convection ; compaction ; Connectors ; Convection ; Crystallization ; Distribution ; Earth Sciences ; Feeds ; Fields ; gabbro ; Heat flux ; Heat transfer ; High temperature ; Horizon ; hydrothermal ; Hydrothermal fields ; Latent heat ; Lava ; Magma ; magma chamber ; Magma chambers ; Mathematical models ; Mid-ocean ridges ; Moho ; Numerical models ; Ocean floor ; Plumes ; Ridges ; Sciences of the Universe ; Temperature ; Thermal convection ; Transport</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2017-05, Vol.18 (5), p.1907-1925</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5157-8473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GC006737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GC006737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GC006737$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-01731492$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fontaine, Fabrice J.</creatorcontrib><creatorcontrib>Rabinowicz, M.</creatorcontrib><creatorcontrib>Cannat, M.</creatorcontrib><title>Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges?</title><title>Geochemistry, geophysics, geosystems : G3</title><description>We present numerical models to explore possible couplings along the axis of fast‐spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end‐member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt‐rich lower crustal along‐axis corridor and permeability k not exceeding ∼10−16 m2 in the upper crust, the hot, melt‐rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic‐hydrothermal interface settles at realistic depths for fast ridges, i.e., 1–2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer‐wide hydrothermal upflows/plumes, spaced by 8–10 km, arise on top of the magmatic upflows. Such magmatic‐hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South‐East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt‐rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ∼100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt‐rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off‐axis to produce the lower crust.
Key Points
The gabbroic magma chamber in the lower crust along the axis of fast MOR can convect as a viscous fluid
Magmatic convection controls the distribution of hydrothermal fields and the pattern of melt delivery in the AML along fast MOR
Lower crust convection offers new perspectives on the formation of the lower crust of fast MOR</description><subject>Cells</subject><subject>Cellular convection</subject><subject>compaction</subject><subject>Connectors</subject><subject>Convection</subject><subject>Crystallization</subject><subject>Distribution</subject><subject>Earth Sciences</subject><subject>Feeds</subject><subject>Fields</subject><subject>gabbro</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Horizon</subject><subject>hydrothermal</subject><subject>Hydrothermal fields</subject><subject>Latent heat</subject><subject>Lava</subject><subject>Magma</subject><subject>magma chamber</subject><subject>Magma chambers</subject><subject>Mathematical models</subject><subject>Mid-ocean ridges</subject><subject>Moho</subject><subject>Numerical models</subject><subject>Ocean floor</subject><subject>Plumes</subject><subject>Ridges</subject><subject>Sciences of the Universe</subject><subject>Temperature</subject><subject>Thermal convection</subject><subject>Transport</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkd1O3DAQhaMKpPJ3xwNY4q7qwtjerOMrhFY0IC1CqtprazaebIy8TrCThb3rI_QZ-mg8SYMWEFczc_TpzJFOlp1yOOcA4kIAn5VzgJmS6kt2wHORTwQItfdp_5odpvQAwKd5Xhxk_-YYWONWzcufvz2tO4rYD5G-v2sNYc9qPzyzZmtj2zcU1-jZhsIoO_I2sSUxeu48ukCWLbfsnanasKGqd21gLryqzLdPFFkVh9Qz9G1YsRpTP35JXSS0bhTunB3v-4rGWD-dXVG6PM72a_SJTt7mUfb7x_Wv-c1kcV_ezq8WE5RCyklRANZ1xeuZ1WoqOBcqXxbKzmCKVFkNolZUW7RCFgp1AQSwVLnSUGgSSsij7NvOt0FvuujWGLemRWdurhbGhTQY4EryqRYbPsJnO7iL7eNAqTcP7RDDmM9wDTrXWuZ6pOSOenKeth-mHMxrX-ZzX6Ysy2vBJUj5HzLyjxE</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Fontaine, Fabrice J.</creator><creator>Rabinowicz, M.</creator><creator>Cannat, M.</creator><general>John Wiley & Sons, Inc</general><general>AGU and the Geochemical Society</general><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5157-8473</orcidid></search><sort><creationdate>201705</creationdate><title>Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges?</title><author>Fontaine, Fabrice J. ; Rabinowicz, M. ; Cannat, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3233-880affc1f6d974211275b87d604aecd902f7efdad2387a980e00b7579089e2723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cells</topic><topic>Cellular convection</topic><topic>compaction</topic><topic>Connectors</topic><topic>Convection</topic><topic>Crystallization</topic><topic>Distribution</topic><topic>Earth Sciences</topic><topic>Feeds</topic><topic>Fields</topic><topic>gabbro</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Horizon</topic><topic>hydrothermal</topic><topic>Hydrothermal fields</topic><topic>Latent heat</topic><topic>Lava</topic><topic>Magma</topic><topic>magma chamber</topic><topic>Magma chambers</topic><topic>Mathematical models</topic><topic>Mid-ocean ridges</topic><topic>Moho</topic><topic>Numerical models</topic><topic>Ocean floor</topic><topic>Plumes</topic><topic>Ridges</topic><topic>Sciences of the Universe</topic><topic>Temperature</topic><topic>Thermal convection</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, Fabrice J.</creatorcontrib><creatorcontrib>Rabinowicz, M.</creatorcontrib><creatorcontrib>Cannat, M.</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontaine, Fabrice J.</au><au>Rabinowicz, M.</au><au>Cannat, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges?</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2017-05</date><risdate>2017</risdate><volume>18</volume><issue>5</issue><spage>1907</spage><epage>1925</epage><pages>1907-1925</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>We present numerical models to explore possible couplings along the axis of fast‐spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end‐member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt‐rich lower crustal along‐axis corridor and permeability k not exceeding ∼10−16 m2 in the upper crust, the hot, melt‐rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic‐hydrothermal interface settles at realistic depths for fast ridges, i.e., 1–2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer‐wide hydrothermal upflows/plumes, spaced by 8–10 km, arise on top of the magmatic upflows. Such magmatic‐hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South‐East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt‐rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ∼100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt‐rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off‐axis to produce the lower crust.
Key Points
The gabbroic magma chamber in the lower crust along the axis of fast MOR can convect as a viscous fluid
Magmatic convection controls the distribution of hydrothermal fields and the pattern of melt delivery in the AML along fast MOR
Lower crust convection offers new perspectives on the formation of the lower crust of fast MOR</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GC006737</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5157-8473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2017-05, Vol.18 (5), p.1907-1925 |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_01731492v1 |
source | Wiley-Blackwell Open Access Titles |
subjects | Cells Cellular convection compaction Connectors Convection Crystallization Distribution Earth Sciences Feeds Fields gabbro Heat flux Heat transfer High temperature Horizon hydrothermal Hydrothermal fields Latent heat Lava Magma magma chamber Magma chambers Mathematical models Mid-ocean ridges Moho Numerical models Ocean floor Plumes Ridges Sciences of the Universe Temperature Thermal convection Transport |
title | Can high‐temperature, high‐heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast‐spreading Mid‐Ocean Ridges? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20high%E2%80%90temperature,%20high%E2%80%90heat%20flux%20hydrothermal%20vent%20fields%20be%20explained%20by%20thermal%20convection%20in%20the%20lower%20crust%20along%20fast%E2%80%90spreading%20Mid%E2%80%90Ocean%20Ridges?&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Fontaine,%20Fabrice%20J.&rft.date=2017-05&rft.volume=18&rft.issue=5&rft.spage=1907&rft.epage=1925&rft.pages=1907-1925&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/2016GC006737&rft_dat=%3Cproquest_24P%3E1909599359%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909599359&rft_id=info:pmid/&rfr_iscdi=true |