Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults
A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2018-01, Vol.723, p.229-241 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | Tectonophysics |
container_volume | 723 |
creator | Cheng, Xiang Zhang, Daowei Jolivet, Marc Yu, Xiangjiang Du, Wei Liu, Runchao Guo, Zhaojie |
description | A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (2) the thrust-controlled fold at shallow depth and the positive inverted flower structure at deep levels, which are separated by a salt layer in the upper Xiaganchaigou Formation. The Yingxiong Range experienced a first stage of transtension in the Eocene, induced by the Altyn Tagh Fault, and a second stage of transpression from the early Miocene to present, jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. The Eocene transtension produced numerous NW-striking right-stepping en-échelon transtensional normal faults or fractures in the Yingxiong Range. At the same time, evaporites and mudstone were deposited in the vicinity of these faults. In the early Miocene, the Eocene transtensional normal faults were reactivated in a reverse sense, and the thrust-controlled folds at shallow depth started to form simultaneously. With transpression enhanced in the late Cenozoic, positive flower structures directly formed in places without evaporites. The Cenozoic transtension to transpression inversion of the Yingxiong Range is the result of strike-slip superimposition controlled by the Altyn Tagh and Eastern Kunlun Faults in time and space.
•Positive flower structures formed in the Yingxiong Range in the late Cenozoic.•A salt layer separates thrust-controlled folds from deep inverted flower structures.•Yingxiong Range experienced Eocene transtension and Miocene–present transpression.•The transtension was induced by the Altyn Tagh Fault.•The transpression was jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. |
doi_str_mv | 10.1016/j.tecto.2017.12.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_01683982v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004019511730522X</els_id><sourcerecordid>2058269054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-70d7a04d09083d5d4bba267e1cddeedf70d8924503abcab406f288bf1a5750743</originalsourceid><addsrcrecordid>eNp9Uc2O0zAQjhBIlIUn4GKJGyLZcf6DxKFUuyyiAoGWAydrEk9al9TO2k6X8or7UrgN4sjJ4_H3M-Mvil5ySDjw8nKXeOq8SVLgVcLTBHjzKFrwumriLC3Lx9ECIIeYNwV_Gj1zbgcAJS_KRfSwIm1-G9Ux5-3U-cniwJQ-kHXKaNZbs2feonae9LnjzXwfLblzQ2n2Q-nNr1Bv2DfUG3rD7ingrWZfUUncs_folH7LPtN9QDu12XoXiqAUPNVPit2gRuamkazaj8Ypf9LtjPbWDANJ1h7ZcvBHzW5xs2WoJbvC2eDTpIdJs2ucBu-eR096HBy9-HteRN-vr25XN_H6y4ePq-U6xqxufFyBrBByCQ3UmSxk3raYlhXxTkoi2Yf3uknzAjJsO2xzKPu0rtueY1EVUOXZRfR61t3iIMYwM9qjMKjEzXItwoKTCJnUWVOnBx7Ar2bwaM3dFP5F7MxkdZhPpFDUadlAcZLMZlRnjXOW-n-6HMQpYrET54jFKWLB02DRBNa7mUVh24MiK1ynSHcklQ1gIY36L_8P0Ji2Zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058269054</pqid></control><display><type>article</type><title>Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Xiang ; Zhang, Daowei ; Jolivet, Marc ; Yu, Xiangjiang ; Du, Wei ; Liu, Runchao ; Guo, Zhaojie</creator><creatorcontrib>Cheng, Xiang ; Zhang, Daowei ; Jolivet, Marc ; Yu, Xiangjiang ; Du, Wei ; Liu, Runchao ; Guo, Zhaojie</creatorcontrib><description>A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (2) the thrust-controlled fold at shallow depth and the positive inverted flower structure at deep levels, which are separated by a salt layer in the upper Xiaganchaigou Formation. The Yingxiong Range experienced a first stage of transtension in the Eocene, induced by the Altyn Tagh Fault, and a second stage of transpression from the early Miocene to present, jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. The Eocene transtension produced numerous NW-striking right-stepping en-échelon transtensional normal faults or fractures in the Yingxiong Range. At the same time, evaporites and mudstone were deposited in the vicinity of these faults. In the early Miocene, the Eocene transtensional normal faults were reactivated in a reverse sense, and the thrust-controlled folds at shallow depth started to form simultaneously. With transpression enhanced in the late Cenozoic, positive flower structures directly formed in places without evaporites. The Cenozoic transtension to transpression inversion of the Yingxiong Range is the result of strike-slip superimposition controlled by the Altyn Tagh and Eastern Kunlun Faults in time and space.
•Positive flower structures formed in the Yingxiong Range in the late Cenozoic.•A salt layer separates thrust-controlled folds from deep inverted flower structures.•Yingxiong Range experienced Eocene transtension and Miocene–present transpression.•The transtension was induced by the Altyn Tagh Fault.•The transpression was jointly controlled by the Altyn Tagh and Eastern Kunlun Faults.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2017.12.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Basins ; Cenozoic ; Earth Sciences ; Eocene ; Evaporites ; Fault lines ; Faults ; Folds ; Fractures ; Geological faults ; Geophysics ; Inversion ; Miocene ; Mudstone ; Qaidam Basin ; Right-stepping en-échelon anticlines ; Sciences of the Universe ; Seismic surveys ; Slip ; Strike-slip superimposition ; Superposition (mathematics) ; Tectonics ; Thrust ; Topography ; Transtension to transpression inversion ; Yingxiong Range</subject><ispartof>Tectonophysics, 2018-01, Vol.723, p.229-241</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 16, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-70d7a04d09083d5d4bba267e1cddeedf70d8924503abcab406f288bf1a5750743</citedby><cites>FETCH-LOGICAL-a389t-70d7a04d09083d5d4bba267e1cddeedf70d8924503abcab406f288bf1a5750743</cites><orcidid>0000-0002-8876-5598 ; 0000-0002-1160-9386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004019511730522X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-01683982$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Zhang, Daowei</creatorcontrib><creatorcontrib>Jolivet, Marc</creatorcontrib><creatorcontrib>Yu, Xiangjiang</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Liu, Runchao</creatorcontrib><creatorcontrib>Guo, Zhaojie</creatorcontrib><title>Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults</title><title>Tectonophysics</title><description>A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (2) the thrust-controlled fold at shallow depth and the positive inverted flower structure at deep levels, which are separated by a salt layer in the upper Xiaganchaigou Formation. The Yingxiong Range experienced a first stage of transtension in the Eocene, induced by the Altyn Tagh Fault, and a second stage of transpression from the early Miocene to present, jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. The Eocene transtension produced numerous NW-striking right-stepping en-échelon transtensional normal faults or fractures in the Yingxiong Range. At the same time, evaporites and mudstone were deposited in the vicinity of these faults. In the early Miocene, the Eocene transtensional normal faults were reactivated in a reverse sense, and the thrust-controlled folds at shallow depth started to form simultaneously. With transpression enhanced in the late Cenozoic, positive flower structures directly formed in places without evaporites. The Cenozoic transtension to transpression inversion of the Yingxiong Range is the result of strike-slip superimposition controlled by the Altyn Tagh and Eastern Kunlun Faults in time and space.
•Positive flower structures formed in the Yingxiong Range in the late Cenozoic.•A salt layer separates thrust-controlled folds from deep inverted flower structures.•Yingxiong Range experienced Eocene transtension and Miocene–present transpression.•The transtension was induced by the Altyn Tagh Fault.•The transpression was jointly controlled by the Altyn Tagh and Eastern Kunlun Faults.</description><subject>Basins</subject><subject>Cenozoic</subject><subject>Earth Sciences</subject><subject>Eocene</subject><subject>Evaporites</subject><subject>Fault lines</subject><subject>Faults</subject><subject>Folds</subject><subject>Fractures</subject><subject>Geological faults</subject><subject>Geophysics</subject><subject>Inversion</subject><subject>Miocene</subject><subject>Mudstone</subject><subject>Qaidam Basin</subject><subject>Right-stepping en-échelon anticlines</subject><subject>Sciences of the Universe</subject><subject>Seismic surveys</subject><subject>Slip</subject><subject>Strike-slip superimposition</subject><subject>Superposition (mathematics)</subject><subject>Tectonics</subject><subject>Thrust</subject><subject>Topography</subject><subject>Transtension to transpression inversion</subject><subject>Yingxiong Range</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9Uc2O0zAQjhBIlIUn4GKJGyLZcf6DxKFUuyyiAoGWAydrEk9al9TO2k6X8or7UrgN4sjJ4_H3M-Mvil5ySDjw8nKXeOq8SVLgVcLTBHjzKFrwumriLC3Lx9ECIIeYNwV_Gj1zbgcAJS_KRfSwIm1-G9Ux5-3U-cniwJQ-kHXKaNZbs2feonae9LnjzXwfLblzQ2n2Q-nNr1Bv2DfUG3rD7ingrWZfUUncs_folH7LPtN9QDu12XoXiqAUPNVPit2gRuamkazaj8Ypf9LtjPbWDANJ1h7ZcvBHzW5xs2WoJbvC2eDTpIdJs2ucBu-eR096HBy9-HteRN-vr25XN_H6y4ePq-U6xqxufFyBrBByCQ3UmSxk3raYlhXxTkoi2Yf3uknzAjJsO2xzKPu0rtueY1EVUOXZRfR61t3iIMYwM9qjMKjEzXItwoKTCJnUWVOnBx7Ar2bwaM3dFP5F7MxkdZhPpFDUadlAcZLMZlRnjXOW-n-6HMQpYrET54jFKWLB02DRBNa7mUVh24MiK1ynSHcklQ1gIY36L_8P0Ji2Zw</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Cheng, Xiang</creator><creator>Zhang, Daowei</creator><creator>Jolivet, Marc</creator><creator>Yu, Xiangjiang</creator><creator>Du, Wei</creator><creator>Liu, Runchao</creator><creator>Guo, Zhaojie</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8876-5598</orcidid><orcidid>https://orcid.org/0000-0002-1160-9386</orcidid></search><sort><creationdate>20180116</creationdate><title>Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults</title><author>Cheng, Xiang ; Zhang, Daowei ; Jolivet, Marc ; Yu, Xiangjiang ; Du, Wei ; Liu, Runchao ; Guo, Zhaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-70d7a04d09083d5d4bba267e1cddeedf70d8924503abcab406f288bf1a5750743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basins</topic><topic>Cenozoic</topic><topic>Earth Sciences</topic><topic>Eocene</topic><topic>Evaporites</topic><topic>Fault lines</topic><topic>Faults</topic><topic>Folds</topic><topic>Fractures</topic><topic>Geological faults</topic><topic>Geophysics</topic><topic>Inversion</topic><topic>Miocene</topic><topic>Mudstone</topic><topic>Qaidam Basin</topic><topic>Right-stepping en-échelon anticlines</topic><topic>Sciences of the Universe</topic><topic>Seismic surveys</topic><topic>Slip</topic><topic>Strike-slip superimposition</topic><topic>Superposition (mathematics)</topic><topic>Tectonics</topic><topic>Thrust</topic><topic>Topography</topic><topic>Transtension to transpression inversion</topic><topic>Yingxiong Range</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Zhang, Daowei</creatorcontrib><creatorcontrib>Jolivet, Marc</creatorcontrib><creatorcontrib>Yu, Xiangjiang</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Liu, Runchao</creatorcontrib><creatorcontrib>Guo, Zhaojie</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xiang</au><au>Zhang, Daowei</au><au>Jolivet, Marc</au><au>Yu, Xiangjiang</au><au>Du, Wei</au><au>Liu, Runchao</au><au>Guo, Zhaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults</atitle><jtitle>Tectonophysics</jtitle><date>2018-01-16</date><risdate>2018</risdate><volume>723</volume><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>A Cenozoic structural inversion event from transtension to transpression involving salt tectonics has been uncovered in the Yingxiong Range, the western Qaidam Basin. Seismic reflection data show that there are two common structural styles in the Yingxiong Range: (1) the positive flower structure; (2) the thrust-controlled fold at shallow depth and the positive inverted flower structure at deep levels, which are separated by a salt layer in the upper Xiaganchaigou Formation. The Yingxiong Range experienced a first stage of transtension in the Eocene, induced by the Altyn Tagh Fault, and a second stage of transpression from the early Miocene to present, jointly controlled by the Altyn Tagh and Eastern Kunlun Faults. The Eocene transtension produced numerous NW-striking right-stepping en-échelon transtensional normal faults or fractures in the Yingxiong Range. At the same time, evaporites and mudstone were deposited in the vicinity of these faults. In the early Miocene, the Eocene transtensional normal faults were reactivated in a reverse sense, and the thrust-controlled folds at shallow depth started to form simultaneously. With transpression enhanced in the late Cenozoic, positive flower structures directly formed in places without evaporites. The Cenozoic transtension to transpression inversion of the Yingxiong Range is the result of strike-slip superimposition controlled by the Altyn Tagh and Eastern Kunlun Faults in time and space.
•Positive flower structures formed in the Yingxiong Range in the late Cenozoic.•A salt layer separates thrust-controlled folds from deep inverted flower structures.•Yingxiong Range experienced Eocene transtension and Miocene–present transpression.•The transtension was induced by the Altyn Tagh Fault.•The transpression was jointly controlled by the Altyn Tagh and Eastern Kunlun Faults.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2017.12.019</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8876-5598</orcidid><orcidid>https://orcid.org/0000-0002-1160-9386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1951 |
ispartof | Tectonophysics, 2018-01, Vol.723, p.229-241 |
issn | 0040-1951 1879-3266 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_01683982v1 |
source | Elsevier ScienceDirect Journals |
subjects | Basins Cenozoic Earth Sciences Eocene Evaporites Fault lines Faults Folds Fractures Geological faults Geophysics Inversion Miocene Mudstone Qaidam Basin Right-stepping en-échelon anticlines Sciences of the Universe Seismic surveys Slip Strike-slip superimposition Superposition (mathematics) Tectonics Thrust Topography Transtension to transpression inversion Yingxiong Range |
title | Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cenozoic%20structural%20inversion%20from%20transtension%20to%20transpression%20in%20Yingxiong%20Range,%20western%20Qaidam%20Basin:%20New%20insights%20into%20strike-slip%20superimposition%20controlled%20by%20Altyn%20Tagh%20and%20Eastern%20Kunlun%20Faults&rft.jtitle=Tectonophysics&rft.au=Cheng,%20Xiang&rft.date=2018-01-16&rft.volume=723&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2017.12.019&rft_dat=%3Cproquest_hal_p%3E2058269054%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058269054&rft_id=info:pmid/&rft_els_id=S004019511730522X&rfr_iscdi=true |