Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing

We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2013-05, Vol.40 (10), p.2055-2059
Hauptverfasser: Read, T., Bour, O., Bense, V., Le Borgne, T., Goderniaux, P., Klepikova, M.V., Hochreutener, R., Lavenant, N., Boschero, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2059
container_issue 10
container_start_page 2055
container_title Geophysical research letters
container_volume 40
creator Read, T.
Bour, O.
Bense, V.
Le Borgne, T.
Goderniaux, P.
Klepikova, M.V.
Hochreutener, R.
Lavenant, N.
Boschero, V.
description We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer. Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat
doi_str_mv 10.1002/grl.50397
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00907341v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529948779</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_BBFFyrB_-DgBctTPuSmUkmx7LarbAolQXBS8jmx27a2cmYZLrWv96Moz0I9pQQPt-Xl7yieI3hDAOQ813ozhqoOHtSLDCv67IFYE-LBQDPe8Lo8-JFjDcAUEGFF8Xdci-DVMkE99P1O7QLfuz1UeYDZDt_RLLXaG9kQinIPg4-JOR6ZKfMGIxGwatbNMYpa93WhNIPySmkXUzBbceUSTKHwQQ5eRRNP9mXxTMru2he_VlPis3lh83yqlx_Xn1cXqxLWbeclRS22ipmiK24ppoQDsQa3GoLLWNVrVVNDaVKtXWGrN1SSU0jlQJtKSHVSXE6l93LTgzBHWS4F146cXWxFq6Po8j_ArkQvsMZv53xEPz30cQkDi4q03WyN36MAjeE8zrfyzN98w-98WPo80sE5hgYA9ziRxWtCZC2xlOP72algo8xGPvQKAYxzVTkmYrfM832fLZH15n7_0Ox-rL-myjnRJ6H-fGQkOFWUFaxRnz9tBJLQjbvG_ZNXFe_AILgs0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642028412</pqid></control><display><type>article</type><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</creator><creatorcontrib>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</creatorcontrib><description>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer. Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50397</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boreholes ; Cables ; Cross flow ; Detection ; Dilution ; Dilution tests ; DTS ; Earth Sciences ; Fiber optics ; fiber-optic distributed temperature sensing ; Flow rates ; Flow velocity ; Fracture mechanics ; Fracture zones ; fractured rock aquifers ; Fractures ; Ground-water flow ; Groundwater ; Groundwater flow ; Heat ; Heat transport ; Injection ; Media ; Optical fibers ; Rocks ; Sciences of the Universe ; Solutes ; Temperature ; Temperature effects ; Temperature measurement ; Tests ; Time measurement ; tracer ; Tracers ; Transport</subject><ispartof>Geophysical research letters, 2013-05, Vol.40 (10), p.2055-2059</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</citedby><cites>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</cites><orcidid>0000-0003-4290-2400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00907341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Read, T.</creatorcontrib><creatorcontrib>Bour, O.</creatorcontrib><creatorcontrib>Bense, V.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Goderniaux, P.</creatorcontrib><creatorcontrib>Klepikova, M.V.</creatorcontrib><creatorcontrib>Hochreutener, R.</creatorcontrib><creatorcontrib>Lavenant, N.</creatorcontrib><creatorcontrib>Boschero, V.</creatorcontrib><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer. Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</description><subject>Boreholes</subject><subject>Cables</subject><subject>Cross flow</subject><subject>Detection</subject><subject>Dilution</subject><subject>Dilution tests</subject><subject>DTS</subject><subject>Earth Sciences</subject><subject>Fiber optics</subject><subject>fiber-optic distributed temperature sensing</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fracture mechanics</subject><subject>Fracture zones</subject><subject>fractured rock aquifers</subject><subject>Fractures</subject><subject>Ground-water flow</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Injection</subject><subject>Media</subject><subject>Optical fibers</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Solutes</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Tests</subject><subject>Time measurement</subject><subject>tracer</subject><subject>Tracers</subject><subject>Transport</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_BBFFyrB_-DgBctTPuSmUkmx7LarbAolQXBS8jmx27a2cmYZLrWv96Moz0I9pQQPt-Xl7yieI3hDAOQ813ozhqoOHtSLDCv67IFYE-LBQDPe8Lo8-JFjDcAUEGFF8Xdci-DVMkE99P1O7QLfuz1UeYDZDt_RLLXaG9kQinIPg4-JOR6ZKfMGIxGwatbNMYpa93WhNIPySmkXUzBbceUSTKHwQQ5eRRNP9mXxTMru2he_VlPis3lh83yqlx_Xn1cXqxLWbeclRS22ipmiK24ppoQDsQa3GoLLWNVrVVNDaVKtXWGrN1SSU0jlQJtKSHVSXE6l93LTgzBHWS4F146cXWxFq6Po8j_ArkQvsMZv53xEPz30cQkDi4q03WyN36MAjeE8zrfyzN98w-98WPo80sE5hgYA9ziRxWtCZC2xlOP72algo8xGPvQKAYxzVTkmYrfM832fLZH15n7_0Ox-rL-myjnRJ6H-fGQkOFWUFaxRnz9tBJLQjbvG_ZNXFe_AILgs0g</recordid><startdate>20130528</startdate><enddate>20130528</enddate><creator>Read, T.</creator><creator>Bour, O.</creator><creator>Bense, V.</creator><creator>Le Borgne, T.</creator><creator>Goderniaux, P.</creator><creator>Klepikova, M.V.</creator><creator>Hochreutener, R.</creator><creator>Lavenant, N.</creator><creator>Boschero, V.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4290-2400</orcidid></search><sort><creationdate>20130528</creationdate><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><author>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boreholes</topic><topic>Cables</topic><topic>Cross flow</topic><topic>Detection</topic><topic>Dilution</topic><topic>Dilution tests</topic><topic>DTS</topic><topic>Earth Sciences</topic><topic>Fiber optics</topic><topic>fiber-optic distributed temperature sensing</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fracture mechanics</topic><topic>Fracture zones</topic><topic>fractured rock aquifers</topic><topic>Fractures</topic><topic>Ground-water flow</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Injection</topic><topic>Media</topic><topic>Optical fibers</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Solutes</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Tests</topic><topic>Time measurement</topic><topic>tracer</topic><topic>Tracers</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Read, T.</creatorcontrib><creatorcontrib>Bour, O.</creatorcontrib><creatorcontrib>Bense, V.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Goderniaux, P.</creatorcontrib><creatorcontrib>Klepikova, M.V.</creatorcontrib><creatorcontrib>Hochreutener, R.</creatorcontrib><creatorcontrib>Lavenant, N.</creatorcontrib><creatorcontrib>Boschero, V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Read, T.</au><au>Bour, O.</au><au>Bense, V.</au><au>Le Borgne, T.</au><au>Goderniaux, P.</au><au>Klepikova, M.V.</au><au>Hochreutener, R.</au><au>Lavenant, N.</au><au>Boschero, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-05-28</date><risdate>2013</risdate><volume>40</volume><issue>10</issue><spage>2055</spage><epage>2059</epage><pages>2055-2059</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer. Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50397</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4290-2400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2013-05, Vol.40 (10), p.2055-2059
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_insu_00907341v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Boreholes
Cables
Cross flow
Detection
Dilution
Dilution tests
DTS
Earth Sciences
Fiber optics
fiber-optic distributed temperature sensing
Flow rates
Flow velocity
Fracture mechanics
Fracture zones
fractured rock aquifers
Fractures
Ground-water flow
Groundwater
Groundwater flow
Heat
Heat transport
Injection
Media
Optical fibers
Rocks
Sciences of the Universe
Solutes
Temperature
Temperature effects
Temperature measurement
Tests
Time measurement
tracer
Tracers
Transport
title Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20groundwater%20flow%20and%20heat%20transport%20in%20fractured%20rock%20using%20fiber-optic%20distributed%20temperature%20sensing&rft.jtitle=Geophysical%20research%20letters&rft.au=Read,%20T.&rft.date=2013-05-28&rft.volume=40&rft.issue=10&rft.spage=2055&rft.epage=2059&rft.pages=2055-2059&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/grl.50397&rft_dat=%3Cproquest_hal_p%3E1529948779%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642028412&rft_id=info:pmid/&rfr_iscdi=true