Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing
We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2013-05, Vol.40 (10), p.2055-2059 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2059 |
---|---|
container_issue | 10 |
container_start_page | 2055 |
container_title | Geophysical research letters |
container_volume | 40 |
creator | Read, T. Bour, O. Bense, V. Le Borgne, T. Goderniaux, P. Klepikova, M.V. Hochreutener, R. Lavenant, N. Boschero, V. |
description | We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer.
Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat |
doi_str_mv | 10.1002/grl.50397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00907341v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529948779</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_BBFFyrB_-DgBctTPuSmUkmx7LarbAolQXBS8jmx27a2cmYZLrWv96Moz0I9pQQPt-Xl7yieI3hDAOQ813ozhqoOHtSLDCv67IFYE-LBQDPe8Lo8-JFjDcAUEGFF8Xdci-DVMkE99P1O7QLfuz1UeYDZDt_RLLXaG9kQinIPg4-JOR6ZKfMGIxGwatbNMYpa93WhNIPySmkXUzBbceUSTKHwQQ5eRRNP9mXxTMru2he_VlPis3lh83yqlx_Xn1cXqxLWbeclRS22ipmiK24ppoQDsQa3GoLLWNVrVVNDaVKtXWGrN1SSU0jlQJtKSHVSXE6l93LTgzBHWS4F146cXWxFq6Po8j_ArkQvsMZv53xEPz30cQkDi4q03WyN36MAjeE8zrfyzN98w-98WPo80sE5hgYA9ziRxWtCZC2xlOP72algo8xGPvQKAYxzVTkmYrfM832fLZH15n7_0Ox-rL-myjnRJ6H-fGQkOFWUFaxRnz9tBJLQjbvG_ZNXFe_AILgs0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642028412</pqid></control><display><type>article</type><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</creator><creatorcontrib>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</creatorcontrib><description>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer.
Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50397</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boreholes ; Cables ; Cross flow ; Detection ; Dilution ; Dilution tests ; DTS ; Earth Sciences ; Fiber optics ; fiber-optic distributed temperature sensing ; Flow rates ; Flow velocity ; Fracture mechanics ; Fracture zones ; fractured rock aquifers ; Fractures ; Ground-water flow ; Groundwater ; Groundwater flow ; Heat ; Heat transport ; Injection ; Media ; Optical fibers ; Rocks ; Sciences of the Universe ; Solutes ; Temperature ; Temperature effects ; Temperature measurement ; Tests ; Time measurement ; tracer ; Tracers ; Transport</subject><ispartof>Geophysical research letters, 2013-05, Vol.40 (10), p.2055-2059</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</citedby><cites>FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</cites><orcidid>0000-0003-4290-2400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00907341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Read, T.</creatorcontrib><creatorcontrib>Bour, O.</creatorcontrib><creatorcontrib>Bense, V.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Goderniaux, P.</creatorcontrib><creatorcontrib>Klepikova, M.V.</creatorcontrib><creatorcontrib>Hochreutener, R.</creatorcontrib><creatorcontrib>Lavenant, N.</creatorcontrib><creatorcontrib>Boschero, V.</creatorcontrib><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer.
Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</description><subject>Boreholes</subject><subject>Cables</subject><subject>Cross flow</subject><subject>Detection</subject><subject>Dilution</subject><subject>Dilution tests</subject><subject>DTS</subject><subject>Earth Sciences</subject><subject>Fiber optics</subject><subject>fiber-optic distributed temperature sensing</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fracture mechanics</subject><subject>Fracture zones</subject><subject>fractured rock aquifers</subject><subject>Fractures</subject><subject>Ground-water flow</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Injection</subject><subject>Media</subject><subject>Optical fibers</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Solutes</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Tests</subject><subject>Time measurement</subject><subject>tracer</subject><subject>Tracers</subject><subject>Transport</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_BBFFyrB_-DgBctTPuSmUkmx7LarbAolQXBS8jmx27a2cmYZLrWv96Moz0I9pQQPt-Xl7yieI3hDAOQ813ozhqoOHtSLDCv67IFYE-LBQDPe8Lo8-JFjDcAUEGFF8Xdci-DVMkE99P1O7QLfuz1UeYDZDt_RLLXaG9kQinIPg4-JOR6ZKfMGIxGwatbNMYpa93WhNIPySmkXUzBbceUSTKHwQQ5eRRNP9mXxTMru2he_VlPis3lh83yqlx_Xn1cXqxLWbeclRS22ipmiK24ppoQDsQa3GoLLWNVrVVNDaVKtXWGrN1SSU0jlQJtKSHVSXE6l93LTgzBHWS4F146cXWxFq6Po8j_ArkQvsMZv53xEPz30cQkDi4q03WyN36MAjeE8zrfyzN98w-98WPo80sE5hgYA9ziRxWtCZC2xlOP72algo8xGPvQKAYxzVTkmYrfM832fLZH15n7_0Ox-rL-myjnRJ6H-fGQkOFWUFaxRnz9tBJLQjbvG_ZNXFe_AILgs0g</recordid><startdate>20130528</startdate><enddate>20130528</enddate><creator>Read, T.</creator><creator>Bour, O.</creator><creator>Bense, V.</creator><creator>Le Borgne, T.</creator><creator>Goderniaux, P.</creator><creator>Klepikova, M.V.</creator><creator>Hochreutener, R.</creator><creator>Lavenant, N.</creator><creator>Boschero, V.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4290-2400</orcidid></search><sort><creationdate>20130528</creationdate><title>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</title><author>Read, T. ; Bour, O. ; Bense, V. ; Le Borgne, T. ; Goderniaux, P. ; Klepikova, M.V. ; Hochreutener, R. ; Lavenant, N. ; Boschero, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4897-60bdfc7e2f39d6d22902fe18df087734dc46e66cc84bdf78b6a6e5acc0df6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boreholes</topic><topic>Cables</topic><topic>Cross flow</topic><topic>Detection</topic><topic>Dilution</topic><topic>Dilution tests</topic><topic>DTS</topic><topic>Earth Sciences</topic><topic>Fiber optics</topic><topic>fiber-optic distributed temperature sensing</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fracture mechanics</topic><topic>Fracture zones</topic><topic>fractured rock aquifers</topic><topic>Fractures</topic><topic>Ground-water flow</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Injection</topic><topic>Media</topic><topic>Optical fibers</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Solutes</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Tests</topic><topic>Time measurement</topic><topic>tracer</topic><topic>Tracers</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Read, T.</creatorcontrib><creatorcontrib>Bour, O.</creatorcontrib><creatorcontrib>Bense, V.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Goderniaux, P.</creatorcontrib><creatorcontrib>Klepikova, M.V.</creatorcontrib><creatorcontrib>Hochreutener, R.</creatorcontrib><creatorcontrib>Lavenant, N.</creatorcontrib><creatorcontrib>Boschero, V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Read, T.</au><au>Bour, O.</au><au>Bense, V.</au><au>Le Borgne, T.</au><au>Goderniaux, P.</au><au>Klepikova, M.V.</au><au>Hochreutener, R.</au><au>Lavenant, N.</au><au>Boschero, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-05-28</date><risdate>2013</risdate><volume>40</volume><issue>10</issue><spage>2055</spage><epage>2059</epage><pages>2055-2059</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We show how fully distributed space‐time measurements with Fiber‐Optic Distributed Temperature Sensing (FO‐DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber‐optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross‐flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole ion borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer.
Key PointsFO‐DTS detects fracture flows of ≅4 L min−1Temperature response of fracture zones calculated for thermal tracer testMost significant fracture for solute transport not the most significant for heat</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50397</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4290-2400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2013-05, Vol.40 (10), p.2055-2059 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_00907341v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals |
subjects | Boreholes Cables Cross flow Detection Dilution Dilution tests DTS Earth Sciences Fiber optics fiber-optic distributed temperature sensing Flow rates Flow velocity Fracture mechanics Fracture zones fractured rock aquifers Fractures Ground-water flow Groundwater Groundwater flow Heat Heat transport Injection Media Optical fibers Rocks Sciences of the Universe Solutes Temperature Temperature effects Temperature measurement Tests Time measurement tracer Tracers Transport |
title | Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20groundwater%20flow%20and%20heat%20transport%20in%20fractured%20rock%20using%20fiber-optic%20distributed%20temperature%20sensing&rft.jtitle=Geophysical%20research%20letters&rft.au=Read,%20T.&rft.date=2013-05-28&rft.volume=40&rft.issue=10&rft.spage=2055&rft.epage=2059&rft.pages=2055-2059&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/grl.50397&rft_dat=%3Cproquest_hal_p%3E1529948779%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642028412&rft_id=info:pmid/&rfr_iscdi=true |