Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions

Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2013-03, Vol.19 (3), p.811-823
Hauptverfasser: Jassey, Vincent EJ, Chiapusio, Geneviève, Binet, Philippe, Buttler, Alexandre, Laggoun-Défarge, Fatima, Delarue, Frédéric, Bernard, Nadine, Mitchell, Edward AD, Toussaint, Marie-Laure, Francez, André-Jean, Gilbert, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 3
container_start_page 811
container_title Global change biology
container_volume 19
creator Jassey, Vincent EJ
Chiapusio, Geneviève
Binet, Philippe
Buttler, Alexandre
Laggoun-Défarge, Fatima
Delarue, Frédéric
Bernard, Nadine
Mitchell, Edward AD
Toussaint, Marie-Laure
Francez, André-Jean
Gilbert, Daniel
description Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands
doi_str_mv 10.1111/gcb.12075
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00766326v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315623078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6305-e500fd79c188123635294cf79fd06c14c38a4476d1c78d7374b52e1af388615b3</originalsourceid><addsrcrecordid>eNqNkVtrFDEYhgdRbK1e-AdkQAQVps05We_WUbfCoohHvAmZTDLNNnMwmenaf2_W2a4gCOYi-SDPd3i_N8seQnAK0zlrdHUKEeD0VnYMMaMFIoLd3sWUFBBAfJTdi3EDAMAIsLvZEcIUEIHFcbZZVv2VKXLV1XllfL9tQj-l2LvuUjUm5q7LPw4XqummNh-MGn0iX-Tau1aNJt-q0LquyZW1Ro8xH9L3WLROh75yyqfs0QSlR9d38X52xyofzYP9e5J9fvP6U3lerN-v3pbLdaEZBrQwFABb84WGQkCEGaZoQbTlC1sDpiHRWChCOKuh5qLmmJOKIgOVxUIwSCt8kj2f614oL4eQBg3XsldOni_X0nVxkgBwxjBiVzDBT2d4CP2PycRRti5q45MO009RQgy5oIRR-j8oZQgDLhL6-C9000-hS6olRAKhdDGcqGczlbYVYzD2MC0EcmesTMbK38Ym9tG-4lS1pj6QN04m4MkeUFErb4PqtIt_OLYABJKd4LOZ2zpvrv_dUa7KlzetiznDxdH8PGSocClZWj-VX9-t5IfvlJbll1fyG_4FqQHGGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282212863</pqid></control><display><type>article</type><title>Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Jassey, Vincent EJ ; Chiapusio, Geneviève ; Binet, Philippe ; Buttler, Alexandre ; Laggoun-Défarge, Fatima ; Delarue, Frédéric ; Bernard, Nadine ; Mitchell, Edward AD ; Toussaint, Marie-Laure ; Francez, André-Jean ; Gilbert, Daniel</creator><creatorcontrib>Jassey, Vincent EJ ; Chiapusio, Geneviève ; Binet, Philippe ; Buttler, Alexandre ; Laggoun-Défarge, Fatima ; Delarue, Frédéric ; Bernard, Nadine ; Mitchell, Edward AD ; Toussaint, Marie-Laure ; Francez, André-Jean ; Gilbert, Daniel</creatorcontrib><description>Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12075</identifier><identifier>PMID: 23504838</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Carbon cycle ; Climate change ; Climatology. Bioclimatology. Climate change ; Continental interfaces, environment ; Earth, ocean, space ; Environmental Sciences ; Exact sciences and technology ; External geophysics ; Food chains ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global Changes ; Global Warming ; Host-Pathogen Interactions ; Meteorology ; microbial food web ; plant and microbial communities ; polyphenols ; Sciences of the Universe ; Soil microorganisms ; Sphagnopsida - microbiology ; Sphagnum ; testate amoebae ; water chemistry ; Wetlands</subject><ispartof>Global change biology, 2013-03, Vol.19 (3), p.811-823</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6305-e500fd79c188123635294cf79fd06c14c38a4476d1c78d7374b52e1af388615b3</citedby><cites>FETCH-LOGICAL-c6305-e500fd79c188123635294cf79fd06c14c38a4476d1c78d7374b52e1af388615b3</cites><orcidid>0000-0002-1450-2437 ; 0000-0001-9956-345X ; 0000-0001-7054-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26904141$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23504838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00766326$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jassey, Vincent EJ</creatorcontrib><creatorcontrib>Chiapusio, Geneviève</creatorcontrib><creatorcontrib>Binet, Philippe</creatorcontrib><creatorcontrib>Buttler, Alexandre</creatorcontrib><creatorcontrib>Laggoun-Défarge, Fatima</creatorcontrib><creatorcontrib>Delarue, Frédéric</creatorcontrib><creatorcontrib>Bernard, Nadine</creatorcontrib><creatorcontrib>Mitchell, Edward AD</creatorcontrib><creatorcontrib>Toussaint, Marie-Laure</creatorcontrib><creatorcontrib>Francez, André-Jean</creatorcontrib><creatorcontrib>Gilbert, Daniel</creatorcontrib><title>Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Continental interfaces, environment</subject><subject>Earth, ocean, space</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Food chains</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global Changes</subject><subject>Global Warming</subject><subject>Host-Pathogen Interactions</subject><subject>Meteorology</subject><subject>microbial food web</subject><subject>plant and microbial communities</subject><subject>polyphenols</subject><subject>Sciences of the Universe</subject><subject>Soil microorganisms</subject><subject>Sphagnopsida - microbiology</subject><subject>Sphagnum</subject><subject>testate amoebae</subject><subject>water chemistry</subject><subject>Wetlands</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtrFDEYhgdRbK1e-AdkQAQVps05We_WUbfCoohHvAmZTDLNNnMwmenaf2_W2a4gCOYi-SDPd3i_N8seQnAK0zlrdHUKEeD0VnYMMaMFIoLd3sWUFBBAfJTdi3EDAMAIsLvZEcIUEIHFcbZZVv2VKXLV1XllfL9tQj-l2LvuUjUm5q7LPw4XqummNh-MGn0iX-Tau1aNJt-q0LquyZW1Ro8xH9L3WLROh75yyqfs0QSlR9d38X52xyofzYP9e5J9fvP6U3lerN-v3pbLdaEZBrQwFABb84WGQkCEGaZoQbTlC1sDpiHRWChCOKuh5qLmmJOKIgOVxUIwSCt8kj2f614oL4eQBg3XsldOni_X0nVxkgBwxjBiVzDBT2d4CP2PycRRti5q45MO009RQgy5oIRR-j8oZQgDLhL6-C9000-hS6olRAKhdDGcqGczlbYVYzD2MC0EcmesTMbK38Ym9tG-4lS1pj6QN04m4MkeUFErb4PqtIt_OLYABJKd4LOZ2zpvrv_dUa7KlzetiznDxdH8PGSocClZWj-VX9-t5IfvlJbll1fyG_4FqQHGGA</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Jassey, Vincent EJ</creator><creator>Chiapusio, Geneviève</creator><creator>Binet, Philippe</creator><creator>Buttler, Alexandre</creator><creator>Laggoun-Défarge, Fatima</creator><creator>Delarue, Frédéric</creator><creator>Bernard, Nadine</creator><creator>Mitchell, Edward AD</creator><creator>Toussaint, Marie-Laure</creator><creator>Francez, André-Jean</creator><creator>Gilbert, Daniel</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>8FD</scope><scope>FR3</scope><scope>H95</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1450-2437</orcidid><orcidid>https://orcid.org/0000-0001-9956-345X</orcidid><orcidid>https://orcid.org/0000-0001-7054-612X</orcidid></search><sort><creationdate>201303</creationdate><title>Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions</title><author>Jassey, Vincent EJ ; Chiapusio, Geneviève ; Binet, Philippe ; Buttler, Alexandre ; Laggoun-Défarge, Fatima ; Delarue, Frédéric ; Bernard, Nadine ; Mitchell, Edward AD ; Toussaint, Marie-Laure ; Francez, André-Jean ; Gilbert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6305-e500fd79c188123635294cf79fd06c14c38a4476d1c78d7374b52e1af388615b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Continental interfaces, environment</topic><topic>Earth, ocean, space</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Food chains</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global Changes</topic><topic>Global Warming</topic><topic>Host-Pathogen Interactions</topic><topic>Meteorology</topic><topic>microbial food web</topic><topic>plant and microbial communities</topic><topic>polyphenols</topic><topic>Sciences of the Universe</topic><topic>Soil microorganisms</topic><topic>Sphagnopsida - microbiology</topic><topic>Sphagnum</topic><topic>testate amoebae</topic><topic>water chemistry</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jassey, Vincent EJ</creatorcontrib><creatorcontrib>Chiapusio, Geneviève</creatorcontrib><creatorcontrib>Binet, Philippe</creatorcontrib><creatorcontrib>Buttler, Alexandre</creatorcontrib><creatorcontrib>Laggoun-Défarge, Fatima</creatorcontrib><creatorcontrib>Delarue, Frédéric</creatorcontrib><creatorcontrib>Bernard, Nadine</creatorcontrib><creatorcontrib>Mitchell, Edward AD</creatorcontrib><creatorcontrib>Toussaint, Marie-Laure</creatorcontrib><creatorcontrib>Francez, André-Jean</creatorcontrib><creatorcontrib>Gilbert, Daniel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jassey, Vincent EJ</au><au>Chiapusio, Geneviève</au><au>Binet, Philippe</au><au>Buttler, Alexandre</au><au>Laggoun-Défarge, Fatima</au><au>Delarue, Frédéric</au><au>Bernard, Nadine</au><au>Mitchell, Edward AD</au><au>Toussaint, Marie-Laure</au><au>Francez, André-Jean</au><au>Gilbert, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>19</volume><issue>3</issue><spage>811</spage><epage>823</epage><pages>811-823</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23504838</pmid><doi>10.1111/gcb.12075</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1450-2437</orcidid><orcidid>https://orcid.org/0000-0001-9956-345X</orcidid><orcidid>https://orcid.org/0000-0001-7054-612X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2013-03, Vol.19 (3), p.811-823
issn 1354-1013
1365-2486
language eng
recordid cdi_hal_primary_oai_HAL_insu_00766326v1
source MEDLINE; Wiley Online Library All Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Carbon cycle
Climate change
Climatology. Bioclimatology. Climate change
Continental interfaces, environment
Earth, ocean, space
Environmental Sciences
Exact sciences and technology
External geophysics
Food chains
Fundamental and applied biological sciences. Psychology
General aspects
Global Changes
Global Warming
Host-Pathogen Interactions
Meteorology
microbial food web
plant and microbial communities
polyphenols
Sciences of the Universe
Soil microorganisms
Sphagnopsida - microbiology
Sphagnum
testate amoebae
water chemistry
Wetlands
title Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Above-%20and%20belowground%20linkages%20in%20Sphagnum%20peatland:%20climate%20warming%20affects%20plant-microbial%20interactions&rft.jtitle=Global%20change%20biology&rft.au=Jassey,%20Vincent%20EJ&rft.date=2013-03&rft.volume=19&rft.issue=3&rft.spage=811&rft.epage=823&rft.pages=811-823&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12075&rft_dat=%3Cproquest_hal_p%3E1315623078%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282212863&rft_id=info:pmid/23504838&rfr_iscdi=true