Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)
In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surf...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2010, Vol.115 (D10), p.1CC-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D10 |
container_start_page | 1CC |
container_title | Journal of Geophysical Research |
container_volume | 115 |
creator | Gilbert, A. Wagnon, P. Vincent, C. Ginot, P. Funk, M. |
description | In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K. |
doi_str_mv | 10.1029/2009JD012961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00563914v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498303411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</originalsourceid><addsrcrecordid>eNp9kstuEzEUhkcIJKLSHQ9ggRAXZcD38SxDCmmrKEhQEcTGOpmcJC6emWBPUvIePEifoU-Go1QVQqI-Cy_8_b_PLcueMvqWUV6-45SW5yeU8VKzB1mPM6Vzzil_mPUokyannBePs-MYL2k6UmlJWS_7PejqNq5XGFxFriDUrlkS6AiQlVuucvS4hc61DelCu3YVeBJdhyTgFsHjnMx2BJulh8qlpw7rNQboNgHj3uTMe1dD4_rkfevd1gF5pYWkpCYwa7dIIgJJH6DvE6Zvrr_0iS5urqevn2SPFuAjHt_eR9nFxw8Xw9N8_Gl0NhyMc1CqUHlFFRgpWanpvOKGGpQVFKaUQgol5IIquVAVKg5zZphkxUxpqLQ2MglmM3GUvTnYrsDbdUiphp1twdnTwdi6Jm4spUqLksktS_DLA7wO7c8Nxs7WLlboPTTYbqItVGopl6ZM5LN_yMt2E5pUiC1LoYxMcR9kNOWSMyMS9Px_ENNciVIysc-sf6Cq0MYYcHFXC6N2vxr279VI-ItbU4hpnosATeXinYbzMnFKJU4cuCvncXevpz0ffT5hOnUrqfKDysUOf92pIPywuhCFstPJyE6-TydfxTdhh-IPoAjSTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625394131</pqid></control><display><type>article</type><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</creator><creatorcontrib>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</creatorcontrib><description>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2009JD012961</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Air temperature ; Atmospheric temperature ; Bolivian Andes ; borehole englacial temperature ; Boreholes ; Climate change ; Climatic conditions ; Cryosphere ; Earth Sciences ; Earth, ocean, space ; Elevation ; Exact sciences and technology ; Geophysics ; Glaciers ; global warming ; Heat flow ; Ice ; inversion model ; Meteorology ; Sciences of the Universe ; Sea level ; Stratigraphy ; Surface temperature ; Temperature inversions ; Temperature measurement</subject><ispartof>Journal of Geophysical Research, 2010, Vol.115 (D10), p.1CC-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. 2010</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</citedby><cites>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JD012961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JD012961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,4010,11493,27900,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22912955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00563914$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilbert, A.</creatorcontrib><creatorcontrib>Wagnon, P.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Ginot, P.</creatorcontrib><creatorcontrib>Funk, M.</creatorcontrib><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</description><subject>Air temperature</subject><subject>Atmospheric temperature</subject><subject>Bolivian Andes</subject><subject>borehole englacial temperature</subject><subject>Boreholes</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Cryosphere</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Elevation</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Glaciers</subject><subject>global warming</subject><subject>Heat flow</subject><subject>Ice</subject><subject>inversion model</subject><subject>Meteorology</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Stratigraphy</subject><subject>Surface temperature</subject><subject>Temperature inversions</subject><subject>Temperature measurement</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kstuEzEUhkcIJKLSHQ9ggRAXZcD38SxDCmmrKEhQEcTGOpmcJC6emWBPUvIePEifoU-Go1QVQqI-Cy_8_b_PLcueMvqWUV6-45SW5yeU8VKzB1mPM6Vzzil_mPUokyannBePs-MYL2k6UmlJWS_7PejqNq5XGFxFriDUrlkS6AiQlVuucvS4hc61DelCu3YVeBJdhyTgFsHjnMx2BJulh8qlpw7rNQboNgHj3uTMe1dD4_rkfevd1gF5pYWkpCYwa7dIIgJJH6DvE6Zvrr_0iS5urqevn2SPFuAjHt_eR9nFxw8Xw9N8_Gl0NhyMc1CqUHlFFRgpWanpvOKGGpQVFKaUQgol5IIquVAVKg5zZphkxUxpqLQ2MglmM3GUvTnYrsDbdUiphp1twdnTwdi6Jm4spUqLksktS_DLA7wO7c8Nxs7WLlboPTTYbqItVGopl6ZM5LN_yMt2E5pUiC1LoYxMcR9kNOWSMyMS9Px_ENNciVIysc-sf6Cq0MYYcHFXC6N2vxr279VI-ItbU4hpnosATeXinYbzMnFKJU4cuCvncXevpz0ffT5hOnUrqfKDysUOf92pIPywuhCFstPJyE6-TydfxTdhh-IPoAjSTQ</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Gilbert, A.</creator><creator>Wagnon, P.</creator><creator>Vincent, C.</creator><creator>Ginot, P.</creator><creator>Funk, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TV</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2010</creationdate><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><author>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air temperature</topic><topic>Atmospheric temperature</topic><topic>Bolivian Andes</topic><topic>borehole englacial temperature</topic><topic>Boreholes</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Cryosphere</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Elevation</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Glaciers</topic><topic>global warming</topic><topic>Heat flow</topic><topic>Ice</topic><topic>inversion model</topic><topic>Meteorology</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Stratigraphy</topic><topic>Surface temperature</topic><topic>Temperature inversions</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, A.</creatorcontrib><creatorcontrib>Wagnon, P.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Ginot, P.</creatorcontrib><creatorcontrib>Funk, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, A.</au><au>Wagnon, P.</au><au>Vincent, C.</au><au>Ginot, P.</au><au>Funk, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010</date><risdate>2010</risdate><volume>115</volume><issue>D10</issue><spage>1CC</spage><epage>n/a</epage><pages>1CC-n/a</pages><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JD012961</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2010, Vol.115 (D10), p.1CC-n/a |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_00563914v1 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | Air temperature Atmospheric temperature Bolivian Andes borehole englacial temperature Boreholes Climate change Climatic conditions Cryosphere Earth Sciences Earth, ocean, space Elevation Exact sciences and technology Geophysics Glaciers global warming Heat flow Ice inversion model Meteorology Sciences of the Universe Sea level Stratigraphy Surface temperature Temperature inversions Temperature measurement |
title | Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20warming%20at%20a%20high-elevation%20tropical%20site%20revealed%20by%20englacial%20temperatures%20at%20Illimani,%20Bolivia%20(6340%20m%20above%20sea%20level,%2016%C2%B0S,%2067%C2%B0W)&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Gilbert,%20A.&rft.date=2010&rft.volume=115&rft.issue=D10&rft.spage=1CC&rft.epage=n/a&rft.pages=1CC-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JD012961&rft_dat=%3Cproquest_hal_p%3E3498303411%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625394131&rft_id=info:pmid/&rfr_iscdi=true |