Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)

In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2010, Vol.115 (D10), p.1CC-n/a
Hauptverfasser: Gilbert, A., Wagnon, P., Vincent, C., Ginot, P., Funk, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D10
container_start_page 1CC
container_title Journal of Geophysical Research
container_volume 115
creator Gilbert, A.
Wagnon, P.
Vincent, C.
Ginot, P.
Funk, M.
description In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.
doi_str_mv 10.1029/2009JD012961
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00563914v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498303411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</originalsourceid><addsrcrecordid>eNp9kstuEzEUhkcIJKLSHQ9ggRAXZcD38SxDCmmrKEhQEcTGOpmcJC6emWBPUvIePEifoU-Go1QVQqI-Cy_8_b_PLcueMvqWUV6-45SW5yeU8VKzB1mPM6Vzzil_mPUokyannBePs-MYL2k6UmlJWS_7PejqNq5XGFxFriDUrlkS6AiQlVuucvS4hc61DelCu3YVeBJdhyTgFsHjnMx2BJulh8qlpw7rNQboNgHj3uTMe1dD4_rkfevd1gF5pYWkpCYwa7dIIgJJH6DvE6Zvrr_0iS5urqevn2SPFuAjHt_eR9nFxw8Xw9N8_Gl0NhyMc1CqUHlFFRgpWanpvOKGGpQVFKaUQgol5IIquVAVKg5zZphkxUxpqLQ2MglmM3GUvTnYrsDbdUiphp1twdnTwdi6Jm4spUqLksktS_DLA7wO7c8Nxs7WLlboPTTYbqItVGopl6ZM5LN_yMt2E5pUiC1LoYxMcR9kNOWSMyMS9Px_ENNciVIysc-sf6Cq0MYYcHFXC6N2vxr279VI-ItbU4hpnosATeXinYbzMnFKJU4cuCvncXevpz0ffT5hOnUrqfKDysUOf92pIPywuhCFstPJyE6-TydfxTdhh-IPoAjSTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625394131</pqid></control><display><type>article</type><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</creator><creatorcontrib>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</creatorcontrib><description>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2009JD012961</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Air temperature ; Atmospheric temperature ; Bolivian Andes ; borehole englacial temperature ; Boreholes ; Climate change ; Climatic conditions ; Cryosphere ; Earth Sciences ; Earth, ocean, space ; Elevation ; Exact sciences and technology ; Geophysics ; Glaciers ; global warming ; Heat flow ; Ice ; inversion model ; Meteorology ; Sciences of the Universe ; Sea level ; Stratigraphy ; Surface temperature ; Temperature inversions ; Temperature measurement</subject><ispartof>Journal of Geophysical Research, 2010, Vol.115 (D10), p.1CC-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. 2010</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</citedby><cites>FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JD012961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JD012961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,4010,11493,27900,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22912955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00563914$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilbert, A.</creatorcontrib><creatorcontrib>Wagnon, P.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Ginot, P.</creatorcontrib><creatorcontrib>Funk, M.</creatorcontrib><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</description><subject>Air temperature</subject><subject>Atmospheric temperature</subject><subject>Bolivian Andes</subject><subject>borehole englacial temperature</subject><subject>Boreholes</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Cryosphere</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Elevation</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Glaciers</subject><subject>global warming</subject><subject>Heat flow</subject><subject>Ice</subject><subject>inversion model</subject><subject>Meteorology</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Stratigraphy</subject><subject>Surface temperature</subject><subject>Temperature inversions</subject><subject>Temperature measurement</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kstuEzEUhkcIJKLSHQ9ggRAXZcD38SxDCmmrKEhQEcTGOpmcJC6emWBPUvIePEifoU-Go1QVQqI-Cy_8_b_PLcueMvqWUV6-45SW5yeU8VKzB1mPM6Vzzil_mPUokyannBePs-MYL2k6UmlJWS_7PejqNq5XGFxFriDUrlkS6AiQlVuucvS4hc61DelCu3YVeBJdhyTgFsHjnMx2BJulh8qlpw7rNQboNgHj3uTMe1dD4_rkfevd1gF5pYWkpCYwa7dIIgJJH6DvE6Zvrr_0iS5urqevn2SPFuAjHt_eR9nFxw8Xw9N8_Gl0NhyMc1CqUHlFFRgpWanpvOKGGpQVFKaUQgol5IIquVAVKg5zZphkxUxpqLQ2MglmM3GUvTnYrsDbdUiphp1twdnTwdi6Jm4spUqLksktS_DLA7wO7c8Nxs7WLlboPTTYbqItVGopl6ZM5LN_yMt2E5pUiC1LoYxMcR9kNOWSMyMS9Px_ENNciVIysc-sf6Cq0MYYcHFXC6N2vxr279VI-ItbU4hpnosATeXinYbzMnFKJU4cuCvncXevpz0ffT5hOnUrqfKDysUOf92pIPywuhCFstPJyE6-TydfxTdhh-IPoAjSTQ</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Gilbert, A.</creator><creator>Wagnon, P.</creator><creator>Vincent, C.</creator><creator>Ginot, P.</creator><creator>Funk, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TV</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2010</creationdate><title>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</title><author>Gilbert, A. ; Wagnon, P. ; Vincent, C. ; Ginot, P. ; Funk, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5575-c05a8441960dc2808e4ca7894343534f054f5ce52ad181417b56ac668460dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air temperature</topic><topic>Atmospheric temperature</topic><topic>Bolivian Andes</topic><topic>borehole englacial temperature</topic><topic>Boreholes</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Cryosphere</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Elevation</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Glaciers</topic><topic>global warming</topic><topic>Heat flow</topic><topic>Ice</topic><topic>inversion model</topic><topic>Meteorology</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Stratigraphy</topic><topic>Surface temperature</topic><topic>Temperature inversions</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, A.</creatorcontrib><creatorcontrib>Wagnon, P.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Ginot, P.</creatorcontrib><creatorcontrib>Funk, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, A.</au><au>Wagnon, P.</au><au>Vincent, C.</au><au>Ginot, P.</au><au>Funk, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010</date><risdate>2010</risdate><volume>115</volume><issue>D10</issue><spage>1CC</spage><epage>n/a</epage><pages>1CC-n/a</pages><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>In June 1999, a deep (138.7 m) ice core was extracted from the summit glacier of Illimani, Bolivia (6340 m above sea level, 16°39′S, 67°47′W), and an englacial temperature profile was measured in the borehole. Using on‐site and regional meteorological data as well as ice core stratigraphy, past surface temperatures were reconstructed with a heat flow model. The englacial temperature measurements exhibit a profile that is far from a steady state, reflecting an increasing atmospheric temperature over several years and nonstationary climatic conditions. Englacial temperature interpretation, using air temperature data, borehole temperature inversion, and melting rate quantification based on ice core density, shows two warming phases from 1900 to 1960 (+0.5 ± 0.3 K starting approximately in 1920–1930) and from 1985 to 1999 (+0.6 ± 0.2 K), corresponding to a mean atmospheric temperature rise of 1.1 ± 0.2 K over the 20th century. According to various climate change scenarios, the future evolution of englacial temperatures was simulated to estimate when and under what conditions this high‐elevation site on the Illimani summit glacier could become temperate in the future. Results show that this glacier might remain cold for more than 90 years in the case of a +2 K rise over the 21st century but could become temperate in the first 20 m depth between 2050 and 2060 if warming reaches +5 K.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JD012961</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2010, Vol.115 (D10), p.1CC-n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_insu_00563914v1
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Air temperature
Atmospheric temperature
Bolivian Andes
borehole englacial temperature
Boreholes
Climate change
Climatic conditions
Cryosphere
Earth Sciences
Earth, ocean, space
Elevation
Exact sciences and technology
Geophysics
Glaciers
global warming
Heat flow
Ice
inversion model
Meteorology
Sciences of the Universe
Sea level
Stratigraphy
Surface temperature
Temperature inversions
Temperature measurement
title Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20warming%20at%20a%20high-elevation%20tropical%20site%20revealed%20by%20englacial%20temperatures%20at%20Illimani,%20Bolivia%20(6340%20m%20above%20sea%20level,%2016%C2%B0S,%2067%C2%B0W)&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Gilbert,%20A.&rft.date=2010&rft.volume=115&rft.issue=D10&rft.spage=1CC&rft.epage=n/a&rft.pages=1CC-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JD012961&rft_dat=%3Cproquest_hal_p%3E3498303411%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625394131&rft_id=info:pmid/&rfr_iscdi=true