Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation

The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial‐interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2010-06, Vol.24 (2), p.n/a
Hauptverfasser: Lourantou, Anna, Lavrič, Jošt V., Köhler, Peter, Barnola, Jean-Marc, Paillard, Didier, Michel, Elisabeth, Raynaud, Dominique, Chappellaz, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Global biogeochemical cycles
container_volume 24
creator Lourantou, Anna
Lavrič, Jošt V.
Köhler, Peter
Barnola, Jean-Marc
Paillard, Didier
Michel, Elisabeth
Raynaud, Dominique
Chappellaz, Jérôme
description The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial‐interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core to bring additional constraints. Agreeing well but largely improving the Taylor Dome ice core record of lower resolution, our δ13CO2 record is characterized by a W shape, with two negative δ13CO2 excursions of 0.5‰ during Heinrich 1 and Younger Dryas events, bracketing a positive δ13CO2 peak during the Bølling/Allerød warm period. The comparison with marine records and the outputs of two C cycle box models suggest that changes in Southern Ocean ventilation drove most of the CO2 increase, with additional contributions from marine productivity changes on the initial CO2 rise and δ13CO2 decline and from rapid vegetation buildup during the CO2 plateau of the Bølling/Allerød.
doi_str_mv 10.1029/2009GB003545
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00562248v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315657941</sourcerecordid><originalsourceid>FETCH-LOGICAL-h4637-197071f966943daf03866b8b50f2616b16a26e0cb16a1579efe96fdb54944dd03</originalsourceid><addsrcrecordid>eNpdkVFrFDEQxxdR8Ky--QGCIIKwdpJsks1ju-hWerQgan0L2d3sXepuciZZ6317U68c0qeZYX7_YWb-RfEawwcMRJ4SANmeA1BWsSfFCsuqKiUh1dNiBXXNS04of168iPEWAFeMyVWxabyLKWjrEvIjSluDmmuCgo0GdXvkzB3SafZxtzXB9qjXofMO2eiT3-V6NjouwczGpYiGJVi3-Tdj0jGhwWwm3VudrHcvi2ejnqJ59RBPim-fPn5tLsr1dfu5OVuX24pTUWIpQOBRci4rOugRaM15V3cMRsIx7zDXhBvo7xPMhDSjkXwcOlblW4cB6Enx_jB3qye1C3bWYa-8turibK2si4sCYDz_pP6NM_zuAO-C_7WYmNRsY2-mSTvjl6hExQFjgetMvnlE3voluHyJqjnGVNaSZejtA6Rjr6cxaNfbeNyCUOAs25E5fODu7GT2xz4Gde-i-t9F1Z43mAuRNeVBY2Myf44aHX4qLqhg6uaqVT_IF3nZNt_VDf0LxP-eHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861139895</pqid></control><display><type>article</type><title>Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Lourantou, Anna ; Lavrič, Jošt V. ; Köhler, Peter ; Barnola, Jean-Marc ; Paillard, Didier ; Michel, Elisabeth ; Raynaud, Dominique ; Chappellaz, Jérôme</creator><creatorcontrib>Lourantou, Anna ; Lavrič, Jošt V. ; Köhler, Peter ; Barnola, Jean-Marc ; Paillard, Didier ; Michel, Elisabeth ; Raynaud, Dominique ; Chappellaz, Jérôme</creatorcontrib><description>The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial‐interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core to bring additional constraints. Agreeing well but largely improving the Taylor Dome ice core record of lower resolution, our δ13CO2 record is characterized by a W shape, with two negative δ13CO2 excursions of 0.5‰ during Heinrich 1 and Younger Dryas events, bracketing a positive δ13CO2 peak during the Bølling/Allerød warm period. The comparison with marine records and the outputs of two C cycle box models suggest that changes in Southern Ocean ventilation drove most of the CO2 increase, with additional contributions from marine productivity changes on the initial CO2 rise and δ13CO2 decline and from rapid vegetation buildup during the CO2 plateau of the Bølling/Allerød.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1029/2009GB003545</identifier><identifier>CODEN: GBCYEP</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; C cycle ; Carbon ; Carbon dioxide ; Climate change ; Cryosphere ; Deglaciation ; Earth ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Geobiology ; Geochemistry ; Glaciology ; ice cores ; Marine ; Oceanography ; paleoclimate ; Paleoclimate science ; Paleontology ; Sciences of the Universe ; Synecology</subject><ispartof>Global biogeochemical cycles, 2010-06, Vol.24 (2), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7810-8888 ; 0000-0002-9995-2794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GB003545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GB003545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23065922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00562248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourantou, Anna</creatorcontrib><creatorcontrib>Lavrič, Jošt V.</creatorcontrib><creatorcontrib>Köhler, Peter</creatorcontrib><creatorcontrib>Barnola, Jean-Marc</creatorcontrib><creatorcontrib>Paillard, Didier</creatorcontrib><creatorcontrib>Michel, Elisabeth</creatorcontrib><creatorcontrib>Raynaud, Dominique</creatorcontrib><creatorcontrib>Chappellaz, Jérôme</creatorcontrib><title>Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial‐interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core to bring additional constraints. Agreeing well but largely improving the Taylor Dome ice core record of lower resolution, our δ13CO2 record is characterized by a W shape, with two negative δ13CO2 excursions of 0.5‰ during Heinrich 1 and Younger Dryas events, bracketing a positive δ13CO2 peak during the Bølling/Allerød warm period. The comparison with marine records and the outputs of two C cycle box models suggest that changes in Southern Ocean ventilation drove most of the CO2 increase, with additional contributions from marine productivity changes on the initial CO2 rise and δ13CO2 decline and from rapid vegetation buildup during the CO2 plateau of the Bølling/Allerød.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>C cycle</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Cryosphere</subject><subject>Deglaciation</subject><subject>Earth</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Geobiology</subject><subject>Geochemistry</subject><subject>Glaciology</subject><subject>ice cores</subject><subject>Marine</subject><subject>Oceanography</subject><subject>paleoclimate</subject><subject>Paleoclimate science</subject><subject>Paleontology</subject><subject>Sciences of the Universe</subject><subject>Synecology</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkVFrFDEQxxdR8Ky--QGCIIKwdpJsks1ju-hWerQgan0L2d3sXepuciZZ6317U68c0qeZYX7_YWb-RfEawwcMRJ4SANmeA1BWsSfFCsuqKiUh1dNiBXXNS04of168iPEWAFeMyVWxabyLKWjrEvIjSluDmmuCgo0GdXvkzB3SafZxtzXB9qjXofMO2eiT3-V6NjouwczGpYiGJVi3-Tdj0jGhwWwm3VudrHcvi2ejnqJ59RBPim-fPn5tLsr1dfu5OVuX24pTUWIpQOBRci4rOugRaM15V3cMRsIx7zDXhBvo7xPMhDSjkXwcOlblW4cB6Enx_jB3qye1C3bWYa-8turibK2si4sCYDz_pP6NM_zuAO-C_7WYmNRsY2-mSTvjl6hExQFjgetMvnlE3voluHyJqjnGVNaSZejtA6Rjr6cxaNfbeNyCUOAs25E5fODu7GT2xz4Gde-i-t9F1Z43mAuRNeVBY2Myf44aHX4qLqhg6uaqVT_IF3nZNt_VDf0LxP-eHg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Lourantou, Anna</creator><creator>Lavrič, Jošt V.</creator><creator>Köhler, Peter</creator><creator>Barnola, Jean-Marc</creator><creator>Paillard, Didier</creator><creator>Michel, Elisabeth</creator><creator>Raynaud, Dominique</creator><creator>Chappellaz, Jérôme</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7SN</scope><scope>7TG</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7810-8888</orcidid><orcidid>https://orcid.org/0000-0002-9995-2794</orcidid></search><sort><creationdate>201006</creationdate><title>Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation</title><author>Lourantou, Anna ; Lavrič, Jošt V. ; Köhler, Peter ; Barnola, Jean-Marc ; Paillard, Didier ; Michel, Elisabeth ; Raynaud, Dominique ; Chappellaz, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h4637-197071f966943daf03866b8b50f2616b16a26e0cb16a1579efe96fdb54944dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>C cycle</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Cryosphere</topic><topic>Deglaciation</topic><topic>Earth</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Geobiology</topic><topic>Geochemistry</topic><topic>Glaciology</topic><topic>ice cores</topic><topic>Marine</topic><topic>Oceanography</topic><topic>paleoclimate</topic><topic>Paleoclimate science</topic><topic>Paleontology</topic><topic>Sciences of the Universe</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourantou, Anna</creatorcontrib><creatorcontrib>Lavrič, Jošt V.</creatorcontrib><creatorcontrib>Köhler, Peter</creatorcontrib><creatorcontrib>Barnola, Jean-Marc</creatorcontrib><creatorcontrib>Paillard, Didier</creatorcontrib><creatorcontrib>Michel, Elisabeth</creatorcontrib><creatorcontrib>Raynaud, Dominique</creatorcontrib><creatorcontrib>Chappellaz, Jérôme</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourantou, Anna</au><au>Lavrič, Jošt V.</au><au>Köhler, Peter</au><au>Barnola, Jean-Marc</au><au>Paillard, Didier</au><au>Michel, Elisabeth</au><au>Raynaud, Dominique</au><au>Chappellaz, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>2010-06</date><risdate>2010</risdate><volume>24</volume><issue>2</issue><epage>n/a</epage><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><coden>GBCYEP</coden><abstract>The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial‐interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core to bring additional constraints. Agreeing well but largely improving the Taylor Dome ice core record of lower resolution, our δ13CO2 record is characterized by a W shape, with two negative δ13CO2 excursions of 0.5‰ during Heinrich 1 and Younger Dryas events, bracketing a positive δ13CO2 peak during the Bølling/Allerød warm period. The comparison with marine records and the outputs of two C cycle box models suggest that changes in Southern Ocean ventilation drove most of the CO2 increase, with additional contributions from marine productivity changes on the initial CO2 rise and δ13CO2 decline and from rapid vegetation buildup during the CO2 plateau of the Bølling/Allerød.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GB003545</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7810-8888</orcidid><orcidid>https://orcid.org/0000-0002-9995-2794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2010-06, Vol.24 (2), p.n/a
issn 0886-6236
1944-9224
1944-8224
language eng
recordid cdi_hal_primary_oai_HAL_insu_00562248v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
C cycle
Carbon
Carbon dioxide
Climate change
Cryosphere
Deglaciation
Earth
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Geobiology
Geochemistry
Glaciology
ice cores
Marine
Oceanography
paleoclimate
Paleoclimate science
Paleontology
Sciences of the Universe
Synecology
title Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20of%20the%20CO2%20rise%20by%20new%20atmospheric%20carbon%20isotopic%20measurements%20during%20the%20last%20deglaciation&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Lourantou,%20Anna&rft.date=2010-06&rft.volume=24&rft.issue=2&rft.epage=n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft.coden=GBCYEP&rft_id=info:doi/10.1029/2009GB003545&rft_dat=%3Cproquest_hal_p%3E2315657941%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861139895&rft_id=info:pmid/&rfr_iscdi=true