Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography

Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2010-06, Vol.115 (B6), p.n/a
Hauptverfasser: Herman, Frédéric, Copeland, Peter, Avouac, Jean-Philippe, Bollinger, Laurent, Mahéo, Gweltaz, Le Fort, Patrick, Rai, Santaman, Foster, David, Pêcher, Arnaud, Stüwe, Kurt, Henry, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B6
container_start_page
container_title Journal of Geophysical Research
container_volume 115
creator Herman, Frédéric
Copeland, Peter
Avouac, Jean-Philippe
Bollinger, Laurent
Mahéo, Gweltaz
Le Fort, Patrick
Rai, Santaman
Foster, David
Pêcher, Arnaud
Stüwe, Kurt
Henry, Pierre
description Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 40Ar/39Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out‐of‐sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out‐of‐sequence thrusting implies an unrealistic convergence rate ≥30 mm yr−1. The out‐of‐sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of
doi_str_mv 10.1029/2008JB006126
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00549759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787073972</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5686-f2dec6e5a267979b64601d617bee7d9704a424681a78a858f402a4884e5e5da73</originalsourceid><addsrcrecordid>eNp9kd9u0zAUxiMEEtXYHQ8QISEktMCx47-X2zRaRikSgnFpnSZO65HGnZ2U9cl4Pdy1qxAX-Mbyd37fZx-fLHtJ4B0Bqt9TAHV9ASAIFU-yESVcFJQCfZqNgDBVAKXyeXYa4y2kxbhgQEbZ76v75bDC3vnuLK_CEHts89o2PjyK2NV5v7Tp3OaxD0PVD8HmvtmJ-cyukzxxqYhbTMbgNrbOm-BXD3XXbWyIKedgCCtfLYPvfOsXrkrWY7qfYzLZPrgqr7HHh8rK17Z13eLxut6v_SLgerl9kT1rsI329LCfZN8_XH27nBTTL-OPl-fTArlQomhobSthOVIhtdRzwQSQWhA5t1bWWgJDRplQBKVCxVXDgCJTillueY2yPMne7nOX2Jp1SI2GrfHozOR8alwXBwPAmZZcb0iC3-zhdfB3g429WblY2bbFzvohGqkkyFJLmshX_5C3fghd6sQoQUDLkpUJOttDVfAxBtscH0DA7GZu_p55wl8fMjGmr20CdpWLRw8tQXANu5bKPffLtXb730xzPf56QbjWu_Ri73Kxt_dHF4afRshScvNjNjafbqbis5pNzU35B4qpy7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861097343</pqid></control><display><type>article</type><title>Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Herman, Frédéric ; Copeland, Peter ; Avouac, Jean-Philippe ; Bollinger, Laurent ; Mahéo, Gweltaz ; Le Fort, Patrick ; Rai, Santaman ; Foster, David ; Pêcher, Arnaud ; Stüwe, Kurt ; Henry, Pierre</creator><creatorcontrib>Herman, Frédéric ; Copeland, Peter ; Avouac, Jean-Philippe ; Bollinger, Laurent ; Mahéo, Gweltaz ; Le Fort, Patrick ; Rai, Santaman ; Foster, David ; Pêcher, Arnaud ; Stüwe, Kurt ; Henry, Pierre</creatorcontrib><description>Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 40Ar/39Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out‐of‐sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out‐of‐sequence thrusting implies an unrealistic convergence rate ≥30 mm yr−1. The out‐of‐sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of &lt;1 mm yr−1. In the duplex model, the 20 mm yr−1 convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr−1 and an underthrusting rate of 14.2 ± 1.8 mm yr−1. Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr−1 in the Lesser Himalaya to 3.0 ± 0.9 mm yr−1 at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 μW m−3. The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr−1. We also run 3‐D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2008JB006126</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Convergence ; Deformation ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Friction ; Geological time ; Geomorphology ; Geophysics ; Himalayas ; Hydrology ; inverse problems ; Kinematics ; Mathematical models ; Mathematics ; numerical modeling ; Plate tectonics ; Sciences of the Universe ; Soil erosion ; thermochronology ; Thrust ; Topography</subject><ispartof>Journal of Geophysical Research, 2010-06, Vol.115 (B6), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5686-f2dec6e5a267979b64601d617bee7d9704a424681a78a858f402a4884e5e5da73</citedby><cites>FETCH-LOGICAL-a5686-f2dec6e5a267979b64601d617bee7d9704a424681a78a858f402a4884e5e5da73</cites><orcidid>0000-0002-3060-8442 ; 0000-0002-2288-6805 ; 0000-0001-8077-9787 ; 0000-0002-5116-860X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JB006126$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JB006126$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23065907$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00549759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herman, Frédéric</creatorcontrib><creatorcontrib>Copeland, Peter</creatorcontrib><creatorcontrib>Avouac, Jean-Philippe</creatorcontrib><creatorcontrib>Bollinger, Laurent</creatorcontrib><creatorcontrib>Mahéo, Gweltaz</creatorcontrib><creatorcontrib>Le Fort, Patrick</creatorcontrib><creatorcontrib>Rai, Santaman</creatorcontrib><creatorcontrib>Foster, David</creatorcontrib><creatorcontrib>Pêcher, Arnaud</creatorcontrib><creatorcontrib>Stüwe, Kurt</creatorcontrib><creatorcontrib>Henry, Pierre</creatorcontrib><title>Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 40Ar/39Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out‐of‐sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out‐of‐sequence thrusting implies an unrealistic convergence rate ≥30 mm yr−1. The out‐of‐sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of &lt;1 mm yr−1. In the duplex model, the 20 mm yr−1 convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr−1 and an underthrusting rate of 14.2 ± 1.8 mm yr−1. Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr−1 in the Lesser Himalaya to 3.0 ± 0.9 mm yr−1 at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 μW m−3. The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr−1. We also run 3‐D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well.</description><subject>Convergence</subject><subject>Deformation</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>Geological time</subject><subject>Geomorphology</subject><subject>Geophysics</subject><subject>Himalayas</subject><subject>Hydrology</subject><subject>inverse problems</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>numerical modeling</subject><subject>Plate tectonics</subject><subject>Sciences of the Universe</subject><subject>Soil erosion</subject><subject>thermochronology</subject><subject>Thrust</subject><subject>Topography</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd9u0zAUxiMEEtXYHQ8QISEktMCx47-X2zRaRikSgnFpnSZO65HGnZ2U9cl4Pdy1qxAX-Mbyd37fZx-fLHtJ4B0Bqt9TAHV9ASAIFU-yESVcFJQCfZqNgDBVAKXyeXYa4y2kxbhgQEbZ76v75bDC3vnuLK_CEHts89o2PjyK2NV5v7Tp3OaxD0PVD8HmvtmJ-cyukzxxqYhbTMbgNrbOm-BXD3XXbWyIKedgCCtfLYPvfOsXrkrWY7qfYzLZPrgqr7HHh8rK17Z13eLxut6v_SLgerl9kT1rsI329LCfZN8_XH27nBTTL-OPl-fTArlQomhobSthOVIhtdRzwQSQWhA5t1bWWgJDRplQBKVCxVXDgCJTillueY2yPMne7nOX2Jp1SI2GrfHozOR8alwXBwPAmZZcb0iC3-zhdfB3g429WblY2bbFzvohGqkkyFJLmshX_5C3fghd6sQoQUDLkpUJOttDVfAxBtscH0DA7GZu_p55wl8fMjGmr20CdpWLRw8tQXANu5bKPffLtXb730xzPf56QbjWu_Ri73Kxt_dHF4afRshScvNjNjafbqbis5pNzU35B4qpy7M</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Herman, Frédéric</creator><creator>Copeland, Peter</creator><creator>Avouac, Jean-Philippe</creator><creator>Bollinger, Laurent</creator><creator>Mahéo, Gweltaz</creator><creator>Le Fort, Patrick</creator><creator>Rai, Santaman</creator><creator>Foster, David</creator><creator>Pêcher, Arnaud</creator><creator>Stüwe, Kurt</creator><creator>Henry, Pierre</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0002-2288-6805</orcidid><orcidid>https://orcid.org/0000-0001-8077-9787</orcidid><orcidid>https://orcid.org/0000-0002-5116-860X</orcidid></search><sort><creationdate>201006</creationdate><title>Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography</title><author>Herman, Frédéric ; Copeland, Peter ; Avouac, Jean-Philippe ; Bollinger, Laurent ; Mahéo, Gweltaz ; Le Fort, Patrick ; Rai, Santaman ; Foster, David ; Pêcher, Arnaud ; Stüwe, Kurt ; Henry, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5686-f2dec6e5a267979b64601d617bee7d9704a424681a78a858f402a4884e5e5da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convergence</topic><topic>Deformation</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>Geological time</topic><topic>Geomorphology</topic><topic>Geophysics</topic><topic>Himalayas</topic><topic>Hydrology</topic><topic>inverse problems</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>numerical modeling</topic><topic>Plate tectonics</topic><topic>Sciences of the Universe</topic><topic>Soil erosion</topic><topic>thermochronology</topic><topic>Thrust</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herman, Frédéric</creatorcontrib><creatorcontrib>Copeland, Peter</creatorcontrib><creatorcontrib>Avouac, Jean-Philippe</creatorcontrib><creatorcontrib>Bollinger, Laurent</creatorcontrib><creatorcontrib>Mahéo, Gweltaz</creatorcontrib><creatorcontrib>Le Fort, Patrick</creatorcontrib><creatorcontrib>Rai, Santaman</creatorcontrib><creatorcontrib>Foster, David</creatorcontrib><creatorcontrib>Pêcher, Arnaud</creatorcontrib><creatorcontrib>Stüwe, Kurt</creatorcontrib><creatorcontrib>Henry, Pierre</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herman, Frédéric</au><au>Copeland, Peter</au><au>Avouac, Jean-Philippe</au><au>Bollinger, Laurent</au><au>Mahéo, Gweltaz</au><au>Le Fort, Patrick</au><au>Rai, Santaman</au><au>Foster, David</au><au>Pêcher, Arnaud</au><au>Stüwe, Kurt</au><au>Henry, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-06</date><risdate>2010</risdate><volume>115</volume><issue>B6</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 40Ar/39Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out‐of‐sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out‐of‐sequence thrusting implies an unrealistic convergence rate ≥30 mm yr−1. The out‐of‐sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of &lt;1 mm yr−1. In the duplex model, the 20 mm yr−1 convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr−1 and an underthrusting rate of 14.2 ± 1.8 mm yr−1. Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr−1 in the Lesser Himalaya to 3.0 ± 0.9 mm yr−1 at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 μW m−3. The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr−1. We also run 3‐D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JB006126</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0002-2288-6805</orcidid><orcidid>https://orcid.org/0000-0001-8077-9787</orcidid><orcidid>https://orcid.org/0000-0002-5116-860X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2010-06, Vol.115 (B6), p.n/a
issn 0148-0227
2169-9313
2156-2202
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_insu_00549759v1
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Convergence
Deformation
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Friction
Geological time
Geomorphology
Geophysics
Himalayas
Hydrology
inverse problems
Kinematics
Mathematical models
Mathematics
numerical modeling
Plate tectonics
Sciences of the Universe
Soil erosion
thermochronology
Thrust
Topography
title Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exhumation,%20crustal%20deformation,%20and%20thermal%20structure%20of%20the%20Nepal%20Himalaya%20derived%20from%20the%20inversion%20of%20thermochronological%20and%20thermobarometric%20data%20and%20modeling%20of%20the%20topography&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Herman,%20Fr%C3%A9d%C3%A9ric&rft.date=2010-06&rft.volume=115&rft.issue=B6&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JB006126&rft_dat=%3Cproquest_hal_p%3E787073972%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861097343&rft_id=info:pmid/&rfr_iscdi=true