Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis
The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyrite-sphalerite grains, bound to phyllosilicates and bound to goethite...
Gespeichert in:
Veröffentlicht in: | Pedosphere 2009-06, Vol.19 (3), p.292-304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 3 |
container_start_page | 292 |
container_title | Pedosphere |
container_volume | 19 |
creator | LAVEUF, C. CORNU, S. BAIZE, D. HARDY, M. JOSIERE, O. DROUIN, S. BRUAND, A. JUILLOT, F. |
description | The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyrite-sphalerite grains, bound to phyllosilicates and bound to goethite in the inherited phosphate nodules. Four pedological processes,
i.e., carbonate dissolution, two stages of redox processes and eluviation, redistributed Zn during pedogenesis. The carbonate dissolution of limestones released Zn bound to calcite into soil solution. Due to residual enrichment, Zn concentrations in the soil are higher than those in parent limestones. Birnessite, ferrihydrite and goethite dispersed in soil horizon trapped high quantities of Zn during their formation. Afterwards, primary redox conditions induced the release of Zn and Fe into soil solution, and the subsequent individualization of Fe and Mn into Zn-rich concretions. Both processes and subsequent aging of the concretions formed induced significant exportation of Zn through the bottom water table. Secondary redox conditions promoted the weathering of Fe and Mn oxides in cements and concretions. This process caused other losses of Zn through lateral exportation in an upper water table. Concomitantly, eluviation occurred at the top of the solum. The lateral exportation of eluviated minerals through the upper water table limited illuviation. Eluviation was also responsible for Zn loss, but this Zn bound to phyllosilicates was not bioavailable. |
doi_str_mv | 10.1016/S1002-0160(09)60120-X |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00403877v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>trq_e200903003</wanfj_id><els_id>S100201600960120X</els_id><sourcerecordid>trq_e200903003</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-dd6c31504d2c4168535a2e76e7102d1f133a192d5d8655de0c5e7832a4c44a123</originalsourceid><addsrcrecordid>eNqFkUuLFDEQx4MoOK5-BCEnUaG1KunnSZZd9wEDiquweCliUj1m6Ulmk-4Rv73ZHVmPnqoOvyr-DyFeIrxDwPb9FQKoqmzwGoY3LaCC6vqRWCmFUDUI3WOxekCeimc53wDUOCCuxOV3H6z8ws7nOfkfy-xjkD5II6-in-Qp73mKO3ZyTHEr137LeY6B5emSfNjIz-zihgNnn5-LJ6OZMr_4O4_Et7OPX08uqvWn88uT43Vl6q6dK-daq7GB2ilbY9s3ujGKu5Y7BOVwRK0NDso1rm-bxjHYhrteK1Pbujao9JF4e_j700y0S35r0m-KxtPF8Zp8yAsVc6D7rttjgV8d4F8mjCZs6CYuKRR5NKdbYgUwgAbQ_8BdirdLMUlbny1Pkwkcl0yqpKp73RawOYA2xZwTjw8aEOiuDrqvg-6yJhjovg66LncfDndcstl7TpSt52BL8ontTC76_3z4A7MLjzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20123836</pqid></control><display><type>article</type><title>Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>LAVEUF, C. ; CORNU, S. ; BAIZE, D. ; HARDY, M. ; JOSIERE, O. ; DROUIN, S. ; BRUAND, A. ; JUILLOT, F.</creator><creatorcontrib>LAVEUF, C. ; CORNU, S. ; BAIZE, D. ; HARDY, M. ; JOSIERE, O. ; DROUIN, S. ; BRUAND, A. ; JUILLOT, F.</creatorcontrib><description>The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyrite-sphalerite grains, bound to phyllosilicates and bound to goethite in the inherited phosphate nodules. Four pedological processes,
i.e., carbonate dissolution, two stages of redox processes and eluviation, redistributed Zn during pedogenesis. The carbonate dissolution of limestones released Zn bound to calcite into soil solution. Due to residual enrichment, Zn concentrations in the soil are higher than those in parent limestones. Birnessite, ferrihydrite and goethite dispersed in soil horizon trapped high quantities of Zn during their formation. Afterwards, primary redox conditions induced the release of Zn and Fe into soil solution, and the subsequent individualization of Fe and Mn into Zn-rich concretions. Both processes and subsequent aging of the concretions formed induced significant exportation of Zn through the bottom water table. Secondary redox conditions promoted the weathering of Fe and Mn oxides in cements and concretions. This process caused other losses of Zn through lateral exportation in an upper water table. Concomitantly, eluviation occurred at the top of the solum. The lateral exportation of eluviated minerals through the upper water table limited illuviation. Eluviation was also responsible for Zn loss, but this Zn bound to phyllosilicates was not bioavailable.</description><identifier>ISSN: 1002-0160</identifier><identifier>EISSN: 2210-5107</identifier><identifier>DOI: 10.1016/S1002-0160(09)60120-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Agricultural sciences ; carbonate dissolution ; Earth Sciences ; eluviation ; Geochemistry ; Life Sciences ; long-term ; redox ; Sciences of the Universe ; Soil study ; speciation</subject><ispartof>Pedosphere, 2009-06, Vol.19 (3), p.292-304</ispartof><rights>2009 Soil Science Society of China</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-dd6c31504d2c4168535a2e76e7102d1f133a192d5d8655de0c5e7832a4c44a123</citedby><cites>FETCH-LOGICAL-a476t-dd6c31504d2c4168535a2e76e7102d1f133a192d5d8655de0c5e7832a4c44a123</cites><orcidid>0000-0001-6914-297X ; 0000-0002-2433-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/trq-e/trq-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1002-0160(09)60120-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00403877$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LAVEUF, C.</creatorcontrib><creatorcontrib>CORNU, S.</creatorcontrib><creatorcontrib>BAIZE, D.</creatorcontrib><creatorcontrib>HARDY, M.</creatorcontrib><creatorcontrib>JOSIERE, O.</creatorcontrib><creatorcontrib>DROUIN, S.</creatorcontrib><creatorcontrib>BRUAND, A.</creatorcontrib><creatorcontrib>JUILLOT, F.</creatorcontrib><title>Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis</title><title>Pedosphere</title><description>The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyrite-sphalerite grains, bound to phyllosilicates and bound to goethite in the inherited phosphate nodules. Four pedological processes,
i.e., carbonate dissolution, two stages of redox processes and eluviation, redistributed Zn during pedogenesis. The carbonate dissolution of limestones released Zn bound to calcite into soil solution. Due to residual enrichment, Zn concentrations in the soil are higher than those in parent limestones. Birnessite, ferrihydrite and goethite dispersed in soil horizon trapped high quantities of Zn during their formation. Afterwards, primary redox conditions induced the release of Zn and Fe into soil solution, and the subsequent individualization of Fe and Mn into Zn-rich concretions. Both processes and subsequent aging of the concretions formed induced significant exportation of Zn through the bottom water table. Secondary redox conditions promoted the weathering of Fe and Mn oxides in cements and concretions. This process caused other losses of Zn through lateral exportation in an upper water table. Concomitantly, eluviation occurred at the top of the solum. The lateral exportation of eluviated minerals through the upper water table limited illuviation. Eluviation was also responsible for Zn loss, but this Zn bound to phyllosilicates was not bioavailable.</description><subject>Agricultural sciences</subject><subject>carbonate dissolution</subject><subject>Earth Sciences</subject><subject>eluviation</subject><subject>Geochemistry</subject><subject>Life Sciences</subject><subject>long-term</subject><subject>redox</subject><subject>Sciences of the Universe</subject><subject>Soil study</subject><subject>speciation</subject><issn>1002-0160</issn><issn>2210-5107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEQx4MoOK5-BCEnUaG1KunnSZZd9wEDiquweCliUj1m6Ulmk-4Rv73ZHVmPnqoOvyr-DyFeIrxDwPb9FQKoqmzwGoY3LaCC6vqRWCmFUDUI3WOxekCeimc53wDUOCCuxOV3H6z8ws7nOfkfy-xjkD5II6-in-Qp73mKO3ZyTHEr137LeY6B5emSfNjIz-zihgNnn5-LJ6OZMr_4O4_Et7OPX08uqvWn88uT43Vl6q6dK-daq7GB2ilbY9s3ujGKu5Y7BOVwRK0NDso1rm-bxjHYhrteK1Pbujao9JF4e_j700y0S35r0m-KxtPF8Zp8yAsVc6D7rttjgV8d4F8mjCZs6CYuKRR5NKdbYgUwgAbQ_8BdirdLMUlbny1Pkwkcl0yqpKp73RawOYA2xZwTjw8aEOiuDrqvg-6yJhjovg66LncfDndcstl7TpSt52BL8ontTC76_3z4A7MLjzI</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>LAVEUF, C.</creator><creator>CORNU, S.</creator><creator>BAIZE, D.</creator><creator>HARDY, M.</creator><creator>JOSIERE, O.</creator><creator>DROUIN, S.</creator><creator>BRUAND, A.</creator><creator>JUILLOT, F.</creator><general>Elsevier Ltd</general><general>INRA,UR0272 Science du Sol,Centre de recherche d'Orléans,45075 Orléans cedex 2(France)%ISTO,UMR 6113,CNRS,Universitd d'Orléans,45071 Orléans cedex 2(France)%IMPMC,UMR CNRS 7590,Université Paris 6 et 7,IPGC,75252 Paris cedex 05(France)</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6914-297X</orcidid><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid></search><sort><creationdate>20090601</creationdate><title>Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis</title><author>LAVEUF, C. ; CORNU, S. ; BAIZE, D. ; HARDY, M. ; JOSIERE, O. ; DROUIN, S. ; BRUAND, A. ; JUILLOT, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-dd6c31504d2c4168535a2e76e7102d1f133a192d5d8655de0c5e7832a4c44a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural sciences</topic><topic>carbonate dissolution</topic><topic>Earth Sciences</topic><topic>eluviation</topic><topic>Geochemistry</topic><topic>Life Sciences</topic><topic>long-term</topic><topic>redox</topic><topic>Sciences of the Universe</topic><topic>Soil study</topic><topic>speciation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAVEUF, C.</creatorcontrib><creatorcontrib>CORNU, S.</creatorcontrib><creatorcontrib>BAIZE, D.</creatorcontrib><creatorcontrib>HARDY, M.</creatorcontrib><creatorcontrib>JOSIERE, O.</creatorcontrib><creatorcontrib>DROUIN, S.</creatorcontrib><creatorcontrib>BRUAND, A.</creatorcontrib><creatorcontrib>JUILLOT, F.</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pedosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAVEUF, C.</au><au>CORNU, S.</au><au>BAIZE, D.</au><au>HARDY, M.</au><au>JOSIERE, O.</au><au>DROUIN, S.</au><au>BRUAND, A.</au><au>JUILLOT, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis</atitle><jtitle>Pedosphere</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>292</spage><epage>304</epage><pages>292-304</pages><issn>1002-0160</issn><eissn>2210-5107</eissn><abstract>The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyrite-sphalerite grains, bound to phyllosilicates and bound to goethite in the inherited phosphate nodules. Four pedological processes,
i.e., carbonate dissolution, two stages of redox processes and eluviation, redistributed Zn during pedogenesis. The carbonate dissolution of limestones released Zn bound to calcite into soil solution. Due to residual enrichment, Zn concentrations in the soil are higher than those in parent limestones. Birnessite, ferrihydrite and goethite dispersed in soil horizon trapped high quantities of Zn during their formation. Afterwards, primary redox conditions induced the release of Zn and Fe into soil solution, and the subsequent individualization of Fe and Mn into Zn-rich concretions. Both processes and subsequent aging of the concretions formed induced significant exportation of Zn through the bottom water table. Secondary redox conditions promoted the weathering of Fe and Mn oxides in cements and concretions. This process caused other losses of Zn through lateral exportation in an upper water table. Concomitantly, eluviation occurred at the top of the solum. The lateral exportation of eluviated minerals through the upper water table limited illuviation. Eluviation was also responsible for Zn loss, but this Zn bound to phyllosilicates was not bioavailable.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1002-0160(09)60120-X</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6914-297X</orcidid><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-0160 |
ispartof | Pedosphere, 2009-06, Vol.19 (3), p.292-304 |
issn | 1002-0160 2210-5107 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_00403877v1 |
source | Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | Agricultural sciences carbonate dissolution Earth Sciences eluviation Geochemistry Life Sciences long-term redox Sciences of the Universe Soil study speciation |
title | Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Redistribution%20in%20a%20Soil%20Developed%20from%20Limestone%20During%20Pedogenesis&rft.jtitle=Pedosphere&rft.au=LAVEUF,%20C.&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=292&rft.epage=304&rft.pages=292-304&rft.issn=1002-0160&rft.eissn=2210-5107&rft_id=info:doi/10.1016/S1002-0160(09)60120-X&rft_dat=%3Cwanfang_jour_hal_p%3Etrq_e200903003%3C/wanfang_jour_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20123836&rft_id=info:pmid/&rft_wanfj_id=trq_e200903003&rft_els_id=S100201600960120X&rfr_iscdi=true |