Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology

We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2008-11, Vol.275 (3), p.201-210
Hauptverfasser: Graindorge, David, Klingelhoefer, Frauke, Sibuet, Jean-Claude, McNeill, Lisa, Henstock, Timothy J., Dean, Simon, Gutscher, Marc-André, Dessa, Jean Xaver, Permana, Haryadi, Singh, Satish C., Leau, Hélène, White, Nicolas, Carton, Hélène, Malod, Jacques André, Rangin, Claude, Aryawan, Ketut G., Chaubey, Anil Kumar, Chauhan, Ajay, Galih, Dodi R., Greenroyd, Christopher James, Laesanpura, Agus, Prihantono, Joko, Royle, Gillian, Shankar, Uma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 3
container_start_page 201
container_title Earth and planetary science letters
container_volume 275
creator Graindorge, David
Klingelhoefer, Frauke
Sibuet, Jean-Claude
McNeill, Lisa
Henstock, Timothy J.
Dean, Simon
Gutscher, Marc-André
Dessa, Jean Xaver
Permana, Haryadi
Singh, Satish C.
Leau, Hélène
White, Nicolas
Carton, Hélène
Malod, Jacques André
Rangin, Claude
Aryawan, Ketut G.
Chaubey, Anil Kumar
Chauhan, Ajay
Galih, Dodi R.
Greenroyd, Christopher James
Laesanpura, Agus
Prihantono, Joko
Royle, Gillian
Shankar, Uma
description We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.
doi_str_mv 10.1016/j.epsl.2008.04.053
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00354708v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X08003002</els_id><sourcerecordid>19653403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodu0f6AnnXoo2B1ZsteGXkJomsDSHJLQ3MSsPNrVIluuJG-bf18vW3LsaeDN9x4zPMY-CigFiObLoaQp-bICaEtQJdTyFVsJ2dYFCPn0mq0ARFW0lXh6y96ldACApm66FftzO0xoMg-W-_CbIp88ZuIpx9nkORIPI5-n6WXRkw1xwOwWHTPPe-I_fvL7eZEijtyE8UhxR2PmA8adG7mNYeCJ0PoQIh9CnPbBh93ze_bGok_04d-8YI_X3x6uborN3ffbq8tNgUrKXFRmbQkFWdGobW_QVEZ1WGGr1lZ2aKzo1krVTU9SUFWjaGqpts22hXpLElt5wT6fc_fo9RTdctazDuj0zeVGuzHNGkDWag3tUSzwpzM8xfBrppT14JIh73GkMCctulM8yAWszqCJIaVI9iVagD41og_61Ig-NaJB6aWRxfT1bKLl36OjqJNxNBrqXSSTdR_c_-x_AXqpl0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19653403</pqid></control><display><type>article</type><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</creator><creatorcontrib>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</creatorcontrib><description>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2008.04.053</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>accretionary wedge ; Earth Sciences ; Environmental Sciences ; Geophysics ; Global Changes ; Marine ; Physics ; Sciences of the Universe ; seafloor morphology ; subduction ; Sumatra ; tectonic</subject><ispartof>Earth and planetary science letters, 2008-11, Vol.275 (3), p.201-210</ispartof><rights>2008 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</citedby><cites>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</cites><orcidid>0000-0003-0123-4063 ; 0000-0001-5838-0577 ; 0000-0002-3537-0285 ; 0000-0002-3673-3279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012821X08003002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00354708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Graindorge, David</creatorcontrib><creatorcontrib>Klingelhoefer, Frauke</creatorcontrib><creatorcontrib>Sibuet, Jean-Claude</creatorcontrib><creatorcontrib>McNeill, Lisa</creatorcontrib><creatorcontrib>Henstock, Timothy J.</creatorcontrib><creatorcontrib>Dean, Simon</creatorcontrib><creatorcontrib>Gutscher, Marc-André</creatorcontrib><creatorcontrib>Dessa, Jean Xaver</creatorcontrib><creatorcontrib>Permana, Haryadi</creatorcontrib><creatorcontrib>Singh, Satish C.</creatorcontrib><creatorcontrib>Leau, Hélène</creatorcontrib><creatorcontrib>White, Nicolas</creatorcontrib><creatorcontrib>Carton, Hélène</creatorcontrib><creatorcontrib>Malod, Jacques André</creatorcontrib><creatorcontrib>Rangin, Claude</creatorcontrib><creatorcontrib>Aryawan, Ketut G.</creatorcontrib><creatorcontrib>Chaubey, Anil Kumar</creatorcontrib><creatorcontrib>Chauhan, Ajay</creatorcontrib><creatorcontrib>Galih, Dodi R.</creatorcontrib><creatorcontrib>Greenroyd, Christopher James</creatorcontrib><creatorcontrib>Laesanpura, Agus</creatorcontrib><creatorcontrib>Prihantono, Joko</creatorcontrib><creatorcontrib>Royle, Gillian</creatorcontrib><creatorcontrib>Shankar, Uma</creatorcontrib><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><title>Earth and planetary science letters</title><description>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</description><subject>accretionary wedge</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>Marine</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>seafloor morphology</subject><subject>subduction</subject><subject>Sumatra</subject><subject>tectonic</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpodu0f6AnnXoo2B1ZsteGXkJomsDSHJLQ3MSsPNrVIluuJG-bf18vW3LsaeDN9x4zPMY-CigFiObLoaQp-bICaEtQJdTyFVsJ2dYFCPn0mq0ARFW0lXh6y96ldACApm66FftzO0xoMg-W-_CbIp88ZuIpx9nkORIPI5-n6WXRkw1xwOwWHTPPe-I_fvL7eZEijtyE8UhxR2PmA8adG7mNYeCJ0PoQIh9CnPbBh93ze_bGok_04d-8YI_X3x6uborN3ffbq8tNgUrKXFRmbQkFWdGobW_QVEZ1WGGr1lZ2aKzo1krVTU9SUFWjaGqpts22hXpLElt5wT6fc_fo9RTdctazDuj0zeVGuzHNGkDWag3tUSzwpzM8xfBrppT14JIh73GkMCctulM8yAWszqCJIaVI9iVagD41og_61Ig-NaJB6aWRxfT1bKLl36OjqJNxNBrqXSSTdR_c_-x_AXqpl0c</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Graindorge, David</creator><creator>Klingelhoefer, Frauke</creator><creator>Sibuet, Jean-Claude</creator><creator>McNeill, Lisa</creator><creator>Henstock, Timothy J.</creator><creator>Dean, Simon</creator><creator>Gutscher, Marc-André</creator><creator>Dessa, Jean Xaver</creator><creator>Permana, Haryadi</creator><creator>Singh, Satish C.</creator><creator>Leau, Hélène</creator><creator>White, Nicolas</creator><creator>Carton, Hélène</creator><creator>Malod, Jacques André</creator><creator>Rangin, Claude</creator><creator>Aryawan, Ketut G.</creator><creator>Chaubey, Anil Kumar</creator><creator>Chauhan, Ajay</creator><creator>Galih, Dodi R.</creator><creator>Greenroyd, Christopher James</creator><creator>Laesanpura, Agus</creator><creator>Prihantono, Joko</creator><creator>Royle, Gillian</creator><creator>Shankar, Uma</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0123-4063</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0002-3537-0285</orcidid><orcidid>https://orcid.org/0000-0002-3673-3279</orcidid></search><sort><creationdate>20081115</creationdate><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><author>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>accretionary wedge</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>Marine</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>seafloor morphology</topic><topic>subduction</topic><topic>Sumatra</topic><topic>tectonic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graindorge, David</creatorcontrib><creatorcontrib>Klingelhoefer, Frauke</creatorcontrib><creatorcontrib>Sibuet, Jean-Claude</creatorcontrib><creatorcontrib>McNeill, Lisa</creatorcontrib><creatorcontrib>Henstock, Timothy J.</creatorcontrib><creatorcontrib>Dean, Simon</creatorcontrib><creatorcontrib>Gutscher, Marc-André</creatorcontrib><creatorcontrib>Dessa, Jean Xaver</creatorcontrib><creatorcontrib>Permana, Haryadi</creatorcontrib><creatorcontrib>Singh, Satish C.</creatorcontrib><creatorcontrib>Leau, Hélène</creatorcontrib><creatorcontrib>White, Nicolas</creatorcontrib><creatorcontrib>Carton, Hélène</creatorcontrib><creatorcontrib>Malod, Jacques André</creatorcontrib><creatorcontrib>Rangin, Claude</creatorcontrib><creatorcontrib>Aryawan, Ketut G.</creatorcontrib><creatorcontrib>Chaubey, Anil Kumar</creatorcontrib><creatorcontrib>Chauhan, Ajay</creatorcontrib><creatorcontrib>Galih, Dodi R.</creatorcontrib><creatorcontrib>Greenroyd, Christopher James</creatorcontrib><creatorcontrib>Laesanpura, Agus</creatorcontrib><creatorcontrib>Prihantono, Joko</creatorcontrib><creatorcontrib>Royle, Gillian</creatorcontrib><creatorcontrib>Shankar, Uma</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graindorge, David</au><au>Klingelhoefer, Frauke</au><au>Sibuet, Jean-Claude</au><au>McNeill, Lisa</au><au>Henstock, Timothy J.</au><au>Dean, Simon</au><au>Gutscher, Marc-André</au><au>Dessa, Jean Xaver</au><au>Permana, Haryadi</au><au>Singh, Satish C.</au><au>Leau, Hélène</au><au>White, Nicolas</au><au>Carton, Hélène</au><au>Malod, Jacques André</au><au>Rangin, Claude</au><au>Aryawan, Ketut G.</au><au>Chaubey, Anil Kumar</au><au>Chauhan, Ajay</au><au>Galih, Dodi R.</au><au>Greenroyd, Christopher James</au><au>Laesanpura, Agus</au><au>Prihantono, Joko</au><au>Royle, Gillian</au><au>Shankar, Uma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</atitle><jtitle>Earth and planetary science letters</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>275</volume><issue>3</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2008.04.053</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0123-4063</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0002-3537-0285</orcidid><orcidid>https://orcid.org/0000-0002-3673-3279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2008-11, Vol.275 (3), p.201-210
issn 0012-821X
1385-013X
language eng
recordid cdi_hal_primary_oai_HAL_insu_00354708v1
source Elsevier ScienceDirect Journals Complete
subjects accretionary wedge
Earth Sciences
Environmental Sciences
Geophysics
Global Changes
Marine
Physics
Sciences of the Universe
seafloor morphology
subduction
Sumatra
tectonic
title Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20lower%20plate%20structure%20on%20upper%20plate%20deformation%20at%20the%20NW%20Sumatran%20convergent%20margin%20from%20seafloor%20morphology&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Graindorge,%20David&rft.date=2008-11-15&rft.volume=275&rft.issue=3&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2008.04.053&rft_dat=%3Cproquest_hal_p%3E19653403%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19653403&rft_id=info:pmid/&rft_els_id=S0012821X08003002&rfr_iscdi=true