Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology
We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic a...
Gespeichert in:
Veröffentlicht in: | Earth and planetary science letters 2008-11, Vol.275 (3), p.201-210 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 3 |
container_start_page | 201 |
container_title | Earth and planetary science letters |
container_volume | 275 |
creator | Graindorge, David Klingelhoefer, Frauke Sibuet, Jean-Claude McNeill, Lisa Henstock, Timothy J. Dean, Simon Gutscher, Marc-André Dessa, Jean Xaver Permana, Haryadi Singh, Satish C. Leau, Hélène White, Nicolas Carton, Hélène Malod, Jacques André Rangin, Claude Aryawan, Ketut G. Chaubey, Anil Kumar Chauhan, Ajay Galih, Dodi R. Greenroyd, Christopher James Laesanpura, Agus Prihantono, Joko Royle, Gillian Shankar, Uma |
description | We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence. |
doi_str_mv | 10.1016/j.epsl.2008.04.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00354708v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X08003002</els_id><sourcerecordid>19653403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodu0f6AnnXoo2B1ZsteGXkJomsDSHJLQ3MSsPNrVIluuJG-bf18vW3LsaeDN9x4zPMY-CigFiObLoaQp-bICaEtQJdTyFVsJ2dYFCPn0mq0ARFW0lXh6y96ldACApm66FftzO0xoMg-W-_CbIp88ZuIpx9nkORIPI5-n6WXRkw1xwOwWHTPPe-I_fvL7eZEijtyE8UhxR2PmA8adG7mNYeCJ0PoQIh9CnPbBh93ze_bGok_04d-8YI_X3x6uborN3ffbq8tNgUrKXFRmbQkFWdGobW_QVEZ1WGGr1lZ2aKzo1krVTU9SUFWjaGqpts22hXpLElt5wT6fc_fo9RTdctazDuj0zeVGuzHNGkDWag3tUSzwpzM8xfBrppT14JIh73GkMCctulM8yAWszqCJIaVI9iVagD41og_61Ig-NaJB6aWRxfT1bKLl36OjqJNxNBrqXSSTdR_c_-x_AXqpl0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19653403</pqid></control><display><type>article</type><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</creator><creatorcontrib>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</creatorcontrib><description>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2008.04.053</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>accretionary wedge ; Earth Sciences ; Environmental Sciences ; Geophysics ; Global Changes ; Marine ; Physics ; Sciences of the Universe ; seafloor morphology ; subduction ; Sumatra ; tectonic</subject><ispartof>Earth and planetary science letters, 2008-11, Vol.275 (3), p.201-210</ispartof><rights>2008 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</citedby><cites>FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</cites><orcidid>0000-0003-0123-4063 ; 0000-0001-5838-0577 ; 0000-0002-3537-0285 ; 0000-0002-3673-3279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012821X08003002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00354708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Graindorge, David</creatorcontrib><creatorcontrib>Klingelhoefer, Frauke</creatorcontrib><creatorcontrib>Sibuet, Jean-Claude</creatorcontrib><creatorcontrib>McNeill, Lisa</creatorcontrib><creatorcontrib>Henstock, Timothy J.</creatorcontrib><creatorcontrib>Dean, Simon</creatorcontrib><creatorcontrib>Gutscher, Marc-André</creatorcontrib><creatorcontrib>Dessa, Jean Xaver</creatorcontrib><creatorcontrib>Permana, Haryadi</creatorcontrib><creatorcontrib>Singh, Satish C.</creatorcontrib><creatorcontrib>Leau, Hélène</creatorcontrib><creatorcontrib>White, Nicolas</creatorcontrib><creatorcontrib>Carton, Hélène</creatorcontrib><creatorcontrib>Malod, Jacques André</creatorcontrib><creatorcontrib>Rangin, Claude</creatorcontrib><creatorcontrib>Aryawan, Ketut G.</creatorcontrib><creatorcontrib>Chaubey, Anil Kumar</creatorcontrib><creatorcontrib>Chauhan, Ajay</creatorcontrib><creatorcontrib>Galih, Dodi R.</creatorcontrib><creatorcontrib>Greenroyd, Christopher James</creatorcontrib><creatorcontrib>Laesanpura, Agus</creatorcontrib><creatorcontrib>Prihantono, Joko</creatorcontrib><creatorcontrib>Royle, Gillian</creatorcontrib><creatorcontrib>Shankar, Uma</creatorcontrib><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><title>Earth and planetary science letters</title><description>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</description><subject>accretionary wedge</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>Marine</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>seafloor morphology</subject><subject>subduction</subject><subject>Sumatra</subject><subject>tectonic</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpodu0f6AnnXoo2B1ZsteGXkJomsDSHJLQ3MSsPNrVIluuJG-bf18vW3LsaeDN9x4zPMY-CigFiObLoaQp-bICaEtQJdTyFVsJ2dYFCPn0mq0ARFW0lXh6y96ldACApm66FftzO0xoMg-W-_CbIp88ZuIpx9nkORIPI5-n6WXRkw1xwOwWHTPPe-I_fvL7eZEijtyE8UhxR2PmA8adG7mNYeCJ0PoQIh9CnPbBh93ze_bGok_04d-8YI_X3x6uborN3ffbq8tNgUrKXFRmbQkFWdGobW_QVEZ1WGGr1lZ2aKzo1krVTU9SUFWjaGqpts22hXpLElt5wT6fc_fo9RTdctazDuj0zeVGuzHNGkDWag3tUSzwpzM8xfBrppT14JIh73GkMCctulM8yAWszqCJIaVI9iVagD41og_61Ig-NaJB6aWRxfT1bKLl36OjqJNxNBrqXSSTdR_c_-x_AXqpl0c</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Graindorge, David</creator><creator>Klingelhoefer, Frauke</creator><creator>Sibuet, Jean-Claude</creator><creator>McNeill, Lisa</creator><creator>Henstock, Timothy J.</creator><creator>Dean, Simon</creator><creator>Gutscher, Marc-André</creator><creator>Dessa, Jean Xaver</creator><creator>Permana, Haryadi</creator><creator>Singh, Satish C.</creator><creator>Leau, Hélène</creator><creator>White, Nicolas</creator><creator>Carton, Hélène</creator><creator>Malod, Jacques André</creator><creator>Rangin, Claude</creator><creator>Aryawan, Ketut G.</creator><creator>Chaubey, Anil Kumar</creator><creator>Chauhan, Ajay</creator><creator>Galih, Dodi R.</creator><creator>Greenroyd, Christopher James</creator><creator>Laesanpura, Agus</creator><creator>Prihantono, Joko</creator><creator>Royle, Gillian</creator><creator>Shankar, Uma</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0123-4063</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0002-3537-0285</orcidid><orcidid>https://orcid.org/0000-0002-3673-3279</orcidid></search><sort><creationdate>20081115</creationdate><title>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</title><author>Graindorge, David ; Klingelhoefer, Frauke ; Sibuet, Jean-Claude ; McNeill, Lisa ; Henstock, Timothy J. ; Dean, Simon ; Gutscher, Marc-André ; Dessa, Jean Xaver ; Permana, Haryadi ; Singh, Satish C. ; Leau, Hélène ; White, Nicolas ; Carton, Hélène ; Malod, Jacques André ; Rangin, Claude ; Aryawan, Ketut G. ; Chaubey, Anil Kumar ; Chauhan, Ajay ; Galih, Dodi R. ; Greenroyd, Christopher James ; Laesanpura, Agus ; Prihantono, Joko ; Royle, Gillian ; Shankar, Uma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-2c7fea1ef164bdcac2c49a2a847f39acf1974456de31e25a16534b6b805be3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>accretionary wedge</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>Marine</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>seafloor morphology</topic><topic>subduction</topic><topic>Sumatra</topic><topic>tectonic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graindorge, David</creatorcontrib><creatorcontrib>Klingelhoefer, Frauke</creatorcontrib><creatorcontrib>Sibuet, Jean-Claude</creatorcontrib><creatorcontrib>McNeill, Lisa</creatorcontrib><creatorcontrib>Henstock, Timothy J.</creatorcontrib><creatorcontrib>Dean, Simon</creatorcontrib><creatorcontrib>Gutscher, Marc-André</creatorcontrib><creatorcontrib>Dessa, Jean Xaver</creatorcontrib><creatorcontrib>Permana, Haryadi</creatorcontrib><creatorcontrib>Singh, Satish C.</creatorcontrib><creatorcontrib>Leau, Hélène</creatorcontrib><creatorcontrib>White, Nicolas</creatorcontrib><creatorcontrib>Carton, Hélène</creatorcontrib><creatorcontrib>Malod, Jacques André</creatorcontrib><creatorcontrib>Rangin, Claude</creatorcontrib><creatorcontrib>Aryawan, Ketut G.</creatorcontrib><creatorcontrib>Chaubey, Anil Kumar</creatorcontrib><creatorcontrib>Chauhan, Ajay</creatorcontrib><creatorcontrib>Galih, Dodi R.</creatorcontrib><creatorcontrib>Greenroyd, Christopher James</creatorcontrib><creatorcontrib>Laesanpura, Agus</creatorcontrib><creatorcontrib>Prihantono, Joko</creatorcontrib><creatorcontrib>Royle, Gillian</creatorcontrib><creatorcontrib>Shankar, Uma</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graindorge, David</au><au>Klingelhoefer, Frauke</au><au>Sibuet, Jean-Claude</au><au>McNeill, Lisa</au><au>Henstock, Timothy J.</au><au>Dean, Simon</au><au>Gutscher, Marc-André</au><au>Dessa, Jean Xaver</au><au>Permana, Haryadi</au><au>Singh, Satish C.</au><au>Leau, Hélène</au><au>White, Nicolas</au><au>Carton, Hélène</au><au>Malod, Jacques André</au><au>Rangin, Claude</au><au>Aryawan, Ketut G.</au><au>Chaubey, Anil Kumar</au><au>Chauhan, Ajay</au><au>Galih, Dodi R.</au><au>Greenroyd, Christopher James</au><au>Laesanpura, Agus</au><au>Prihantono, Joko</au><au>Royle, Gillian</au><au>Shankar, Uma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology</atitle><jtitle>Earth and planetary science letters</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>275</volume><issue>3</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>We present results from multibeam bathymetric data acquired during 2005 and 2006, in the region of maximum slip of the 26 Dec. 2004 earthquake (Mw 9.2). These data provide high-resolution images of seafloor morphology of the entire NW Sumatra forearc from the Sunda trench to the submarine volcanic arc just north of Sumatra. A slope gradient analysis of the combined dataset accurately highlights those portions of the seafloor shaped by active tectonic, depositional and/or erosional processes. The greatest slope gradients are located in the frontal 30 km of the forearc, at the toe of the accretionary wedge. This suggests that long-term deformation rates are highest here and that probably only minor amounts of slip are accommodated by other thrust faults further landward. Obvious N–S oriented lineaments observed on the incoming oceanic plate are aligned sub-parallel to the fracture zones associated with the Wharton fossil spreading center. Active strike-slip motion is suggested by recent deformation with up to 20–30 m of vertical offset. The intersection of these N–S elongated bathymetric scarps with the accretionary wedge partly controls the geometry of thrust anticlines and the location of erosional features (e.g. slide scars, canyons) at the wedge toe. Our interpretation suggests that these N–S lineaments have a significant impact on the oceanic plate, the toe of the wedge and further landward in the wedge. Finally, the bathymetric data indicate that folding at the front of the accretionary wedge occurs primarily along landward-vergent (seaward-dipping) thrusts, an unusual style in accretionary wedges worldwide. The N–S elongated lineaments locally act as boundaries between zones with predominant seaward versus landward vergence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2008.04.053</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0123-4063</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0002-3537-0285</orcidid><orcidid>https://orcid.org/0000-0002-3673-3279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-821X |
ispartof | Earth and planetary science letters, 2008-11, Vol.275 (3), p.201-210 |
issn | 0012-821X 1385-013X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_00354708v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | accretionary wedge Earth Sciences Environmental Sciences Geophysics Global Changes Marine Physics Sciences of the Universe seafloor morphology subduction Sumatra tectonic |
title | Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20lower%20plate%20structure%20on%20upper%20plate%20deformation%20at%20the%20NW%20Sumatran%20convergent%20margin%20from%20seafloor%20morphology&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Graindorge,%20David&rft.date=2008-11-15&rft.volume=275&rft.issue=3&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2008.04.053&rft_dat=%3Cproquest_hal_p%3E19653403%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19653403&rft_id=info:pmid/&rft_els_id=S0012821X08003002&rfr_iscdi=true |