Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells
T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight sta...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2018-02, Vol.48 (2), p.243-257.e10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257.e10 |
---|---|
container_issue | 2 |
container_start_page | 243 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 48 |
creator | Johnson, John L. Georgakilas, Georgios Petrovic, Jelena Kurachi, Makoto Cai, Stanley Harly, Christelle Pear, Warren S. Bhandoola, Avinash Wherry, E. John Vahedi, Golnaz |
description | T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.
[Display omitted]
•TCF-1 drives the early wave of chromatin accessibility in T cell development•Tcf7−/− mice cannot establish the open chromatin landscape of normal T cells•At the single-cell level, TCF-1 dictates a coordinate opening of the chromatin•TCF-1 can erase repressive marks and activate T cell-restricted genes in fibroblasts
It is known that TCF-1 is required for T cell development, but the mechanism by which it controls the T cell lineage remains unclear. Johnson et al. reveal that TCF-1 controls T cell fate through its ability to create de novo open chromatin, establishing the epigenetic identity of T cells. |
doi_str_mv | 10.1016/j.immuni.2018.01.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_03538964v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761318300335</els_id><sourcerecordid>2007515983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-dfe128593b4e1e2de7573842503a4f3a8295613ebf29a6f25c04353c19bff0b33</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoiXwDxCyxKWHbvDXfviCVIWGRorEJZw4WF7vbDpR1htsb6X-e5xu6YED0kj24Xln5p2XkI-cLTnj1ZfDEodh8rgUjDdLxnOJV-SSM10Xijfs9flfq6KuuLwg72I8MMZVqdlbciG0qqq6rC7Jry16sHsovkGCMKBHv6e7YH10AU8JR0_X1qUx0N1qXXC68ZjQJog03QO9PeEePCR0dNOBT5ge6djTHV3B8Rjfkze9PUb48PwuyM_17W51V2x_fN-sbraFU7VMRdcDF02pZauAg-igLmvZKFEyaVUvbSN0mT1A2wttq16UjilZSsd12_eslXJBrue-9_ZoTgEHGx7NaNHc3WwN-ph9GZYVja7UA8_41Yyfwvh7gpjMgNHlha2HcYpGsHw2rnneYkE-_4Mexin4bOaJKnmpm_N8NVMujDEG6F-W4MycszIHM2dlzlkZxnOJLPv03HxqB-heRH_DycDXGYB8vAeEYKJD8A46DOCS6Ub8_4Q_uu6krg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007515983</pqid></control><display><type>article</type><title>Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Johnson, John L. ; Georgakilas, Georgios ; Petrovic, Jelena ; Kurachi, Makoto ; Cai, Stanley ; Harly, Christelle ; Pear, Warren S. ; Bhandoola, Avinash ; Wherry, E. John ; Vahedi, Golnaz</creator><creatorcontrib>Johnson, John L. ; Georgakilas, Georgios ; Petrovic, Jelena ; Kurachi, Makoto ; Cai, Stanley ; Harly, Christelle ; Pear, Warren S. ; Bhandoola, Avinash ; Wherry, E. John ; Vahedi, Golnaz</creatorcontrib><description>T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.
[Display omitted]
•TCF-1 drives the early wave of chromatin accessibility in T cell development•Tcf7−/− mice cannot establish the open chromatin landscape of normal T cells•At the single-cell level, TCF-1 dictates a coordinate opening of the chromatin•TCF-1 can erase repressive marks and activate T cell-restricted genes in fibroblasts
It is known that TCF-1 is required for T cell development, but the mechanism by which it controls the T cell lineage remains unclear. Johnson et al. reveal that TCF-1 controls T cell fate through its ability to create de novo open chromatin, establishing the epigenetic identity of T cells.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.01.012</identifier><identifier>PMID: 29466756</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accessibility ; Animals ; Binding sites ; Cell fate ; Cell Lineage ; Chromatin ; Chromatin - physiology ; chromatin accessibility ; Chromatin Assembly and Disassembly ; Deoxyribonucleic acid ; Developmental stages ; DNA ; Epigenetics ; Epigenomics ; Fibroblasts ; Fibroblasts - metabolism ; Gene expression ; Genes ; Genomes ; Hepatocyte nuclear factor 1 ; Hepatocyte Nuclear Factor 1-alpha - physiology ; Life Sciences ; Lineage-determining transcription factor ; Lymphocytes ; Lymphocytes T ; Mice ; NIH 3T3 Cells ; nucleosomes ; Regulatory sequences ; repressed chromatin ; reprogramming ; single-cell epigenomics ; Stem cells ; T cell development ; T cell receptors ; T Cell Transcription Factor 1 - physiology ; T-Lymphocytes - physiology ; TCF-1 ; Transcription factors ; Transcription, Genetic</subject><ispartof>Immunity (Cambridge, Mass.), 2018-02, Vol.48 (2), p.243-257.e10</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 20, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-dfe128593b4e1e2de7573842503a4f3a8295613ebf29a6f25c04353c19bff0b33</citedby><cites>FETCH-LOGICAL-c473t-dfe128593b4e1e2de7573842503a4f3a8295613ebf29a6f25c04353c19bff0b33</cites><orcidid>0000-0002-8045-9166 ; 0000-0002-4657-8372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761318300335$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29466756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03538964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, John L.</creatorcontrib><creatorcontrib>Georgakilas, Georgios</creatorcontrib><creatorcontrib>Petrovic, Jelena</creatorcontrib><creatorcontrib>Kurachi, Makoto</creatorcontrib><creatorcontrib>Cai, Stanley</creatorcontrib><creatorcontrib>Harly, Christelle</creatorcontrib><creatorcontrib>Pear, Warren S.</creatorcontrib><creatorcontrib>Bhandoola, Avinash</creatorcontrib><creatorcontrib>Wherry, E. John</creatorcontrib><creatorcontrib>Vahedi, Golnaz</creatorcontrib><title>Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.
[Display omitted]
•TCF-1 drives the early wave of chromatin accessibility in T cell development•Tcf7−/− mice cannot establish the open chromatin landscape of normal T cells•At the single-cell level, TCF-1 dictates a coordinate opening of the chromatin•TCF-1 can erase repressive marks and activate T cell-restricted genes in fibroblasts
It is known that TCF-1 is required for T cell development, but the mechanism by which it controls the T cell lineage remains unclear. Johnson et al. reveal that TCF-1 controls T cell fate through its ability to create de novo open chromatin, establishing the epigenetic identity of T cells.</description><subject>Accessibility</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Cell fate</subject><subject>Cell Lineage</subject><subject>Chromatin</subject><subject>Chromatin - physiology</subject><subject>chromatin accessibility</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental stages</subject><subject>DNA</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hepatocyte nuclear factor 1</subject><subject>Hepatocyte Nuclear Factor 1-alpha - physiology</subject><subject>Life Sciences</subject><subject>Lineage-determining transcription factor</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>nucleosomes</subject><subject>Regulatory sequences</subject><subject>repressed chromatin</subject><subject>reprogramming</subject><subject>single-cell epigenomics</subject><subject>Stem cells</subject><subject>T cell development</subject><subject>T cell receptors</subject><subject>T Cell Transcription Factor 1 - physiology</subject><subject>T-Lymphocytes - physiology</subject><subject>TCF-1</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EoiXwDxCyxKWHbvDXfviCVIWGRorEJZw4WF7vbDpR1htsb6X-e5xu6YED0kj24Xln5p2XkI-cLTnj1ZfDEodh8rgUjDdLxnOJV-SSM10Xijfs9flfq6KuuLwg72I8MMZVqdlbciG0qqq6rC7Jry16sHsovkGCMKBHv6e7YH10AU8JR0_X1qUx0N1qXXC68ZjQJog03QO9PeEePCR0dNOBT5ge6djTHV3B8Rjfkze9PUb48PwuyM_17W51V2x_fN-sbraFU7VMRdcDF02pZauAg-igLmvZKFEyaVUvbSN0mT1A2wttq16UjilZSsd12_eslXJBrue-9_ZoTgEHGx7NaNHc3WwN-ph9GZYVja7UA8_41Yyfwvh7gpjMgNHlha2HcYpGsHw2rnneYkE-_4Mexin4bOaJKnmpm_N8NVMujDEG6F-W4MycszIHM2dlzlkZxnOJLPv03HxqB-heRH_DycDXGYB8vAeEYKJD8A46DOCS6Ub8_4Q_uu6krg</recordid><startdate>20180220</startdate><enddate>20180220</enddate><creator>Johnson, John L.</creator><creator>Georgakilas, Georgios</creator><creator>Petrovic, Jelena</creator><creator>Kurachi, Makoto</creator><creator>Cai, Stanley</creator><creator>Harly, Christelle</creator><creator>Pear, Warren S.</creator><creator>Bhandoola, Avinash</creator><creator>Wherry, E. John</creator><creator>Vahedi, Golnaz</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8045-9166</orcidid><orcidid>https://orcid.org/0000-0002-4657-8372</orcidid></search><sort><creationdate>20180220</creationdate><title>Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells</title><author>Johnson, John L. ; Georgakilas, Georgios ; Petrovic, Jelena ; Kurachi, Makoto ; Cai, Stanley ; Harly, Christelle ; Pear, Warren S. ; Bhandoola, Avinash ; Wherry, E. John ; Vahedi, Golnaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-dfe128593b4e1e2de7573842503a4f3a8295613ebf29a6f25c04353c19bff0b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accessibility</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Cell fate</topic><topic>Cell Lineage</topic><topic>Chromatin</topic><topic>Chromatin - physiology</topic><topic>chromatin accessibility</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental stages</topic><topic>DNA</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hepatocyte nuclear factor 1</topic><topic>Hepatocyte Nuclear Factor 1-alpha - physiology</topic><topic>Life Sciences</topic><topic>Lineage-determining transcription factor</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>nucleosomes</topic><topic>Regulatory sequences</topic><topic>repressed chromatin</topic><topic>reprogramming</topic><topic>single-cell epigenomics</topic><topic>Stem cells</topic><topic>T cell development</topic><topic>T cell receptors</topic><topic>T Cell Transcription Factor 1 - physiology</topic><topic>T-Lymphocytes - physiology</topic><topic>TCF-1</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, John L.</creatorcontrib><creatorcontrib>Georgakilas, Georgios</creatorcontrib><creatorcontrib>Petrovic, Jelena</creatorcontrib><creatorcontrib>Kurachi, Makoto</creatorcontrib><creatorcontrib>Cai, Stanley</creatorcontrib><creatorcontrib>Harly, Christelle</creatorcontrib><creatorcontrib>Pear, Warren S.</creatorcontrib><creatorcontrib>Bhandoola, Avinash</creatorcontrib><creatorcontrib>Wherry, E. John</creatorcontrib><creatorcontrib>Vahedi, Golnaz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, John L.</au><au>Georgakilas, Georgios</au><au>Petrovic, Jelena</au><au>Kurachi, Makoto</au><au>Cai, Stanley</au><au>Harly, Christelle</au><au>Pear, Warren S.</au><au>Bhandoola, Avinash</au><au>Wherry, E. John</au><au>Vahedi, Golnaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2018-02-20</date><risdate>2018</risdate><volume>48</volume><issue>2</issue><spage>243</spage><epage>257.e10</epage><pages>243-257.e10</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.
[Display omitted]
•TCF-1 drives the early wave of chromatin accessibility in T cell development•Tcf7−/− mice cannot establish the open chromatin landscape of normal T cells•At the single-cell level, TCF-1 dictates a coordinate opening of the chromatin•TCF-1 can erase repressive marks and activate T cell-restricted genes in fibroblasts
It is known that TCF-1 is required for T cell development, but the mechanism by which it controls the T cell lineage remains unclear. Johnson et al. reveal that TCF-1 controls T cell fate through its ability to create de novo open chromatin, establishing the epigenetic identity of T cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29466756</pmid><doi>10.1016/j.immuni.2018.01.012</doi><orcidid>https://orcid.org/0000-0002-8045-9166</orcidid><orcidid>https://orcid.org/0000-0002-4657-8372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2018-02, Vol.48 (2), p.243-257.e10 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_03538964v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accessibility Animals Binding sites Cell fate Cell Lineage Chromatin Chromatin - physiology chromatin accessibility Chromatin Assembly and Disassembly Deoxyribonucleic acid Developmental stages DNA Epigenetics Epigenomics Fibroblasts Fibroblasts - metabolism Gene expression Genes Genomes Hepatocyte nuclear factor 1 Hepatocyte Nuclear Factor 1-alpha - physiology Life Sciences Lineage-determining transcription factor Lymphocytes Lymphocytes T Mice NIH 3T3 Cells nucleosomes Regulatory sequences repressed chromatin reprogramming single-cell epigenomics Stem cells T cell development T cell receptors T Cell Transcription Factor 1 - physiology T-Lymphocytes - physiology TCF-1 Transcription factors Transcription, Genetic |
title | Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lineage-Determining%20Transcription%20Factor%20TCF-1%20Initiates%20the%20Epigenetic%20Identity%20of%20T%20Cells&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Johnson,%20John%20L.&rft.date=2018-02-20&rft.volume=48&rft.issue=2&rft.spage=243&rft.epage=257.e10&rft.pages=243-257.e10&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.01.012&rft_dat=%3Cproquest_hal_p%3E2007515983%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007515983&rft_id=info:pmid/29466756&rft_els_id=S1074761318300335&rfr_iscdi=true |