Dynamic predictions of kidney graft survival in the presence of longitudinal outliers

In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2021-01, Vol.30 (1), p.185-203
Hauptverfasser: Asar, Özgür, Fournier, Marie-Cécile, Dantan, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 185
container_title Statistical methods in medical research
container_volume 30
creator Asar, Özgür
Fournier, Marie-Cécile
Dantan, Etienne
description In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.
doi_str_mv 10.1177/0962280220945352
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_03137366v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220945352</sage_id><sourcerecordid>2490519582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK3uXUnArdF5ZjLLUh8VCm7sepgmN-3UPOpMUui_d0KqguDqLs53zj0chK4JvidEygesEkpTTClWXDBBT9CYcCljzBg_ReNejnt9hC6832KMJebqHI0YlakUQozR8vFQm8pm0c5BbrPWNrWPmiL6sHkNh2jtTNFGvnN7uzdlZOuo3UDPeqgz6MGyqde27XJbB73p2tKC85forDClh6vjnaDl89P7bB4v3l5eZ9NFnIWWbQwiFCpSIxnkyvCVUlySpMCUMWYAUkWNkEANzkSuqCoYkSmXWcZxASrQbILuhtyNKfXO2cq4g26M1fPpQtvag6s0ZoRJliR7EvDbAd-55rMD3-pt07lQ3GvKFRZEiZQGCg9U5hrvHRQ_yQTrfnb9d_ZguTkGd6sK8h_D984BiAfAmzX8fv038AtuWIkn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490519582</pqid></control><display><type>article</type><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</creator><creatorcontrib>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</creatorcontrib><description>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220945352</identifier><identifier>PMID: 32787555</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Assumptions ; Bayesian analysis ; Discrimination ; Grafting ; Kidney transplants ; Life Sciences ; Mathematical models ; Modelling ; Outliers (statistics) ; Parameter estimation ; Parameter sensitivity ; Robustness ; Santé publique et épidémiologie ; Simulation ; Survival ; Transplants &amp; implants ; Validation studies ; Validity ; Within-subjects design</subject><ispartof>Statistical methods in medical research, 2021-01, Vol.30 (1), p.185-203</ispartof><rights>The Author(s) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</citedby><cites>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</cites><orcidid>0000-0003-0603-1409 ; 0000-0001-7137-5051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280220945352$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280220945352$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21799,27903,27904,30978,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32787555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03137366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asar, Özgür</creatorcontrib><creatorcontrib>Fournier, Marie-Cécile</creatorcontrib><creatorcontrib>Dantan, Etienne</creatorcontrib><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</description><subject>Assumptions</subject><subject>Bayesian analysis</subject><subject>Discrimination</subject><subject>Grafting</subject><subject>Kidney transplants</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Robustness</subject><subject>Santé publique et épidémiologie</subject><subject>Simulation</subject><subject>Survival</subject><subject>Transplants &amp; implants</subject><subject>Validation studies</subject><subject>Validity</subject><subject>Within-subjects design</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEtLw0AUhQdRbK3uXUnArdF5ZjLLUh8VCm7sepgmN-3UPOpMUui_d0KqguDqLs53zj0chK4JvidEygesEkpTTClWXDBBT9CYcCljzBg_ReNejnt9hC6832KMJebqHI0YlakUQozR8vFQm8pm0c5BbrPWNrWPmiL6sHkNh2jtTNFGvnN7uzdlZOuo3UDPeqgz6MGyqde27XJbB73p2tKC85forDClh6vjnaDl89P7bB4v3l5eZ9NFnIWWbQwiFCpSIxnkyvCVUlySpMCUMWYAUkWNkEANzkSuqCoYkSmXWcZxASrQbILuhtyNKfXO2cq4g26M1fPpQtvag6s0ZoRJliR7EvDbAd-55rMD3-pt07lQ3GvKFRZEiZQGCg9U5hrvHRQ_yQTrfnb9d_ZguTkGd6sK8h_D984BiAfAmzX8fv038AtuWIkn</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Asar, Özgür</creator><creator>Fournier, Marie-Cécile</creator><creator>Dantan, Etienne</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0603-1409</orcidid><orcidid>https://orcid.org/0000-0001-7137-5051</orcidid></search><sort><creationdate>20210101</creationdate><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><author>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assumptions</topic><topic>Bayesian analysis</topic><topic>Discrimination</topic><topic>Grafting</topic><topic>Kidney transplants</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Robustness</topic><topic>Santé publique et épidémiologie</topic><topic>Simulation</topic><topic>Survival</topic><topic>Transplants &amp; implants</topic><topic>Validation studies</topic><topic>Validity</topic><topic>Within-subjects design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asar, Özgür</creatorcontrib><creatorcontrib>Fournier, Marie-Cécile</creatorcontrib><creatorcontrib>Dantan, Etienne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asar, Özgür</au><au>Fournier, Marie-Cécile</au><au>Dantan, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32787555</pmid><doi>10.1177/0962280220945352</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0603-1409</orcidid><orcidid>https://orcid.org/0000-0001-7137-5051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2021-01, Vol.30 (1), p.185-203
issn 0962-2802
1477-0334
language eng
recordid cdi_hal_primary_oai_HAL_inserm_03137366v1
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List
subjects Assumptions
Bayesian analysis
Discrimination
Grafting
Kidney transplants
Life Sciences
Mathematical models
Modelling
Outliers (statistics)
Parameter estimation
Parameter sensitivity
Robustness
Santé publique et épidémiologie
Simulation
Survival
Transplants & implants
Validation studies
Validity
Within-subjects design
title Dynamic predictions of kidney graft survival in the presence of longitudinal outliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20predictions%20of%20kidney%20graft%20survival%20in%20the%20presence%20of%20longitudinal%20outliers&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Asar,%20%C3%96zg%C3%BCr&rft.date=2021-01-01&rft.volume=30&rft.issue=1&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220945352&rft_dat=%3Cproquest_hal_p%3E2490519582%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490519582&rft_id=info:pmid/32787555&rft_sage_id=10.1177_0962280220945352&rfr_iscdi=true