Dynamic predictions of kidney graft survival in the presence of longitudinal outliers
In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e....
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2021-01, Vol.30 (1), p.185-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Statistical methods in medical research |
container_volume | 30 |
creator | Asar, Özgür Fournier, Marie-Cécile Dantan, Etienne |
description | In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies. |
doi_str_mv | 10.1177/0962280220945352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_03137366v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220945352</sage_id><sourcerecordid>2490519582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK3uXUnArdF5ZjLLUh8VCm7sepgmN-3UPOpMUui_d0KqguDqLs53zj0chK4JvidEygesEkpTTClWXDBBT9CYcCljzBg_ReNejnt9hC6832KMJebqHI0YlakUQozR8vFQm8pm0c5BbrPWNrWPmiL6sHkNh2jtTNFGvnN7uzdlZOuo3UDPeqgz6MGyqde27XJbB73p2tKC85forDClh6vjnaDl89P7bB4v3l5eZ9NFnIWWbQwiFCpSIxnkyvCVUlySpMCUMWYAUkWNkEANzkSuqCoYkSmXWcZxASrQbILuhtyNKfXO2cq4g26M1fPpQtvag6s0ZoRJliR7EvDbAd-55rMD3-pt07lQ3GvKFRZEiZQGCg9U5hrvHRQ_yQTrfnb9d_ZguTkGd6sK8h_D984BiAfAmzX8fv038AtuWIkn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490519582</pqid></control><display><type>article</type><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</creator><creatorcontrib>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</creatorcontrib><description>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220945352</identifier><identifier>PMID: 32787555</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Assumptions ; Bayesian analysis ; Discrimination ; Grafting ; Kidney transplants ; Life Sciences ; Mathematical models ; Modelling ; Outliers (statistics) ; Parameter estimation ; Parameter sensitivity ; Robustness ; Santé publique et épidémiologie ; Simulation ; Survival ; Transplants & implants ; Validation studies ; Validity ; Within-subjects design</subject><ispartof>Statistical methods in medical research, 2021-01, Vol.30 (1), p.185-203</ispartof><rights>The Author(s) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</citedby><cites>FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</cites><orcidid>0000-0003-0603-1409 ; 0000-0001-7137-5051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280220945352$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280220945352$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21799,27903,27904,30978,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32787555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03137366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asar, Özgür</creatorcontrib><creatorcontrib>Fournier, Marie-Cécile</creatorcontrib><creatorcontrib>Dantan, Etienne</creatorcontrib><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</description><subject>Assumptions</subject><subject>Bayesian analysis</subject><subject>Discrimination</subject><subject>Grafting</subject><subject>Kidney transplants</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Robustness</subject><subject>Santé publique et épidémiologie</subject><subject>Simulation</subject><subject>Survival</subject><subject>Transplants & implants</subject><subject>Validation studies</subject><subject>Validity</subject><subject>Within-subjects design</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEtLw0AUhQdRbK3uXUnArdF5ZjLLUh8VCm7sepgmN-3UPOpMUui_d0KqguDqLs53zj0chK4JvidEygesEkpTTClWXDBBT9CYcCljzBg_ReNejnt9hC6832KMJebqHI0YlakUQozR8vFQm8pm0c5BbrPWNrWPmiL6sHkNh2jtTNFGvnN7uzdlZOuo3UDPeqgz6MGyqde27XJbB73p2tKC85forDClh6vjnaDl89P7bB4v3l5eZ9NFnIWWbQwiFCpSIxnkyvCVUlySpMCUMWYAUkWNkEANzkSuqCoYkSmXWcZxASrQbILuhtyNKfXO2cq4g26M1fPpQtvag6s0ZoRJliR7EvDbAd-55rMD3-pt07lQ3GvKFRZEiZQGCg9U5hrvHRQ_yQTrfnb9d_ZguTkGd6sK8h_D984BiAfAmzX8fv038AtuWIkn</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Asar, Özgür</creator><creator>Fournier, Marie-Cécile</creator><creator>Dantan, Etienne</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0603-1409</orcidid><orcidid>https://orcid.org/0000-0001-7137-5051</orcidid></search><sort><creationdate>20210101</creationdate><title>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</title><author>Asar, Özgür ; Fournier, Marie-Cécile ; Dantan, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-e5070f8a73ed9a4b994716f02333aee892a57e2a0c5d929f317847cc40fe9b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assumptions</topic><topic>Bayesian analysis</topic><topic>Discrimination</topic><topic>Grafting</topic><topic>Kidney transplants</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Robustness</topic><topic>Santé publique et épidémiologie</topic><topic>Simulation</topic><topic>Survival</topic><topic>Transplants & implants</topic><topic>Validation studies</topic><topic>Validity</topic><topic>Within-subjects design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asar, Özgür</creatorcontrib><creatorcontrib>Fournier, Marie-Cécile</creatorcontrib><creatorcontrib>Dantan, Etienne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asar, Özgür</au><au>Fournier, Marie-Cécile</au><au>Dantan, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic predictions of kidney graft survival in the presence of longitudinal outliers</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework with t-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32787555</pmid><doi>10.1177/0962280220945352</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0603-1409</orcidid><orcidid>https://orcid.org/0000-0001-7137-5051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2021-01, Vol.30 (1), p.185-203 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_03137366v1 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List |
subjects | Assumptions Bayesian analysis Discrimination Grafting Kidney transplants Life Sciences Mathematical models Modelling Outliers (statistics) Parameter estimation Parameter sensitivity Robustness Santé publique et épidémiologie Simulation Survival Transplants & implants Validation studies Validity Within-subjects design |
title | Dynamic predictions of kidney graft survival in the presence of longitudinal outliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20predictions%20of%20kidney%20graft%20survival%20in%20the%20presence%20of%20longitudinal%20outliers&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Asar,%20%C3%96zg%C3%BCr&rft.date=2021-01-01&rft.volume=30&rft.issue=1&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220945352&rft_dat=%3Cproquest_hal_p%3E2490519582%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490519582&rft_id=info:pmid/32787555&rft_sage_id=10.1177_0962280220945352&rfr_iscdi=true |