3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization

Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595
Hauptverfasser: Babilotte, Joanna, Guduric, Vera, Le Nihouannen, Damien, Naveau, Adrien, Fricain, Jean‐Christophe, Catros, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2595
container_issue 8
container_start_page 2579
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 107
creator Babilotte, Joanna
Guduric, Vera
Le Nihouannen, Damien
Naveau, Adrien
Fricain, Jean‐Christophe
Catros, Sylvain
description Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.
doi_str_mv 10.1002/jbm.b.34348
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_02870512v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189531974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</originalsourceid><addsrcrecordid>eNp9kb9uFDEQhy0EIuGgokeWaJDIHf63uzZdEhICOkST3rK9duLT2r7Yu6Cj4h14Q54EJ5tckYJqrJlvPnn0A-A1RiuMEPmw0WGlV5RRxp-AQ9w0ZMkEx0_3744egBelbCrcooY-BwcUccZRyw_BDf0Et9nH0fZwm4ZdsPnv7z_BR5vVAE0K21T8aKH2KajRZq-GAl3KUKdo4ehLmSy08aou1GG8-gjPlc7eqNGnCFXsoblWWZnb1V93zZfgmasS--q-LsDl-dnl6cVy_f3zl9Pj9dKwFvEloVRro7tOIN60vOkYaTU3guveCeEQ44JyK7BTplHOOoRMnaseu5Z3VNMFOJq112qQ9cKg8k4m5eXF8Vr6WGwOEhHeoQaTH7ji72Z8m9PNZMsogy_GDoOKNk1FEsxFQ7HoWEXfPkI3acqx3iIJRQi1hFV0Ad7PlMmplGzd_hMYydvcZM1NanmXW6Xf3DsnHWy_Zx-CqgCZgZ9-sLv_ueTXk28ns_UfsBik-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300062495</pqid></control><display><type>article</type><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</creator><creatorcontrib>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</creatorcontrib><description>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34348</identifier><identifier>PMID: 30848068</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D printing ; Biological activity ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone healing ; bone regeneration ; Bones ; calcium phosphate(s) ; ceramic ; Composite materials ; Fabrication ; Formulations ; Life Sciences ; Materials research ; Materials science ; Minerals ; polymer ; Polymer matrix composites ; Polymers ; Properties (attributes) ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Three dimensional composites ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</citedby><cites>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02870512$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Babilotte, Joanna</creatorcontrib><creatorcontrib>Guduric, Vera</creatorcontrib><creatorcontrib>Le Nihouannen, Damien</creatorcontrib><creatorcontrib>Naveau, Adrien</creatorcontrib><creatorcontrib>Fricain, Jean‐Christophe</creatorcontrib><creatorcontrib>Catros, Sylvain</creatorcontrib><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</description><subject>3D printing</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>bone regeneration</subject><subject>Bones</subject><subject>calcium phosphate(s)</subject><subject>ceramic</subject><subject>Composite materials</subject><subject>Fabrication</subject><subject>Formulations</subject><subject>Life Sciences</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Minerals</subject><subject>polymer</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kb9uFDEQhy0EIuGgokeWaJDIHf63uzZdEhICOkST3rK9duLT2r7Yu6Cj4h14Q54EJ5tckYJqrJlvPnn0A-A1RiuMEPmw0WGlV5RRxp-AQ9w0ZMkEx0_3744egBelbCrcooY-BwcUccZRyw_BDf0Et9nH0fZwm4ZdsPnv7z_BR5vVAE0K21T8aKH2KajRZq-GAl3KUKdo4ehLmSy08aou1GG8-gjPlc7eqNGnCFXsoblWWZnb1V93zZfgmasS--q-LsDl-dnl6cVy_f3zl9Pj9dKwFvEloVRro7tOIN60vOkYaTU3guveCeEQ44JyK7BTplHOOoRMnaseu5Z3VNMFOJq112qQ9cKg8k4m5eXF8Vr6WGwOEhHeoQaTH7ji72Z8m9PNZMsogy_GDoOKNk1FEsxFQ7HoWEXfPkI3acqx3iIJRQi1hFV0Ad7PlMmplGzd_hMYydvcZM1NanmXW6Xf3DsnHWy_Zx-CqgCZgZ9-sLv_ueTXk28ns_UfsBik-g</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Babilotte, Joanna</creator><creator>Guduric, Vera</creator><creator>Le Nihouannen, Damien</creator><creator>Naveau, Adrien</creator><creator>Fricain, Jean‐Christophe</creator><creator>Catros, Sylvain</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201911</creationdate><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><author>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>bone regeneration</topic><topic>Bones</topic><topic>calcium phosphate(s)</topic><topic>ceramic</topic><topic>Composite materials</topic><topic>Fabrication</topic><topic>Formulations</topic><topic>Life Sciences</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Minerals</topic><topic>polymer</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babilotte, Joanna</creatorcontrib><creatorcontrib>Guduric, Vera</creatorcontrib><creatorcontrib>Le Nihouannen, Damien</creatorcontrib><creatorcontrib>Naveau, Adrien</creatorcontrib><creatorcontrib>Fricain, Jean‐Christophe</creatorcontrib><creatorcontrib>Catros, Sylvain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babilotte, Joanna</au><au>Guduric, Vera</au><au>Le Nihouannen, Damien</au><au>Naveau, Adrien</au><au>Fricain, Jean‐Christophe</au><au>Catros, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2019-11</date><risdate>2019</risdate><volume>107</volume><issue>8</issue><spage>2579</spage><epage>2595</epage><pages>2579-2595</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30848068</pmid><doi>10.1002/jbm.b.34348</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595
issn 1552-4973
1552-4981
language eng
recordid cdi_hal_primary_oai_HAL_inserm_02870512v1
source Wiley Online Library Journals Frontfile Complete
subjects 3D printing
Biological activity
Biomaterials
Biomedical materials
Bone biomaterials
Bone growth
Bone healing
bone regeneration
Bones
calcium phosphate(s)
ceramic
Composite materials
Fabrication
Formulations
Life Sciences
Materials research
Materials science
Minerals
polymer
Polymer matrix composites
Polymers
Properties (attributes)
Regeneration
Regeneration (physiology)
Scaffolds
Three dimensional composites
Three dimensional printing
Tissue engineering
title 3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20polymer%E2%80%93mineral%20composite%20biomaterials%20for%20bone%20tissue%20engineering:%20Fabrication%20and%20characterization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Babilotte,%20Joanna&rft.date=2019-11&rft.volume=107&rft.issue=8&rft.spage=2579&rft.epage=2595&rft.pages=2579-2595&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34348&rft_dat=%3Cproquest_hal_p%3E2189531974%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300062495&rft_id=info:pmid/30848068&rfr_iscdi=true