3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization
Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. Howeve...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2595 |
---|---|
container_issue | 8 |
container_start_page | 2579 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 107 |
creator | Babilotte, Joanna Guduric, Vera Le Nihouannen, Damien Naveau, Adrien Fricain, Jean‐Christophe Catros, Sylvain |
description | Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019. |
doi_str_mv | 10.1002/jbm.b.34348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_02870512v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189531974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</originalsourceid><addsrcrecordid>eNp9kb9uFDEQhy0EIuGgokeWaJDIHf63uzZdEhICOkST3rK9duLT2r7Yu6Cj4h14Q54EJ5tckYJqrJlvPnn0A-A1RiuMEPmw0WGlV5RRxp-AQ9w0ZMkEx0_3744egBelbCrcooY-BwcUccZRyw_BDf0Et9nH0fZwm4ZdsPnv7z_BR5vVAE0K21T8aKH2KajRZq-GAl3KUKdo4ehLmSy08aou1GG8-gjPlc7eqNGnCFXsoblWWZnb1V93zZfgmasS--q-LsDl-dnl6cVy_f3zl9Pj9dKwFvEloVRro7tOIN60vOkYaTU3guveCeEQ44JyK7BTplHOOoRMnaseu5Z3VNMFOJq112qQ9cKg8k4m5eXF8Vr6WGwOEhHeoQaTH7ji72Z8m9PNZMsogy_GDoOKNk1FEsxFQ7HoWEXfPkI3acqx3iIJRQi1hFV0Ad7PlMmplGzd_hMYydvcZM1NanmXW6Xf3DsnHWy_Zx-CqgCZgZ9-sLv_ueTXk28ns_UfsBik-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300062495</pqid></control><display><type>article</type><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</creator><creatorcontrib>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</creatorcontrib><description>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34348</identifier><identifier>PMID: 30848068</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3D printing ; Biological activity ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone healing ; bone regeneration ; Bones ; calcium phosphate(s) ; ceramic ; Composite materials ; Fabrication ; Formulations ; Life Sciences ; Materials research ; Materials science ; Minerals ; polymer ; Polymer matrix composites ; Polymers ; Properties (attributes) ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Three dimensional composites ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</citedby><cites>FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02870512$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Babilotte, Joanna</creatorcontrib><creatorcontrib>Guduric, Vera</creatorcontrib><creatorcontrib>Le Nihouannen, Damien</creatorcontrib><creatorcontrib>Naveau, Adrien</creatorcontrib><creatorcontrib>Fricain, Jean‐Christophe</creatorcontrib><creatorcontrib>Catros, Sylvain</creatorcontrib><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</description><subject>3D printing</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>bone regeneration</subject><subject>Bones</subject><subject>calcium phosphate(s)</subject><subject>ceramic</subject><subject>Composite materials</subject><subject>Fabrication</subject><subject>Formulations</subject><subject>Life Sciences</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Minerals</subject><subject>polymer</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kb9uFDEQhy0EIuGgokeWaJDIHf63uzZdEhICOkST3rK9duLT2r7Yu6Cj4h14Q54EJ5tckYJqrJlvPnn0A-A1RiuMEPmw0WGlV5RRxp-AQ9w0ZMkEx0_3744egBelbCrcooY-BwcUccZRyw_BDf0Et9nH0fZwm4ZdsPnv7z_BR5vVAE0K21T8aKH2KajRZq-GAl3KUKdo4ehLmSy08aou1GG8-gjPlc7eqNGnCFXsoblWWZnb1V93zZfgmasS--q-LsDl-dnl6cVy_f3zl9Pj9dKwFvEloVRro7tOIN60vOkYaTU3guveCeEQ44JyK7BTplHOOoRMnaseu5Z3VNMFOJq112qQ9cKg8k4m5eXF8Vr6WGwOEhHeoQaTH7ji72Z8m9PNZMsogy_GDoOKNk1FEsxFQ7HoWEXfPkI3acqx3iIJRQi1hFV0Ad7PlMmplGzd_hMYydvcZM1NanmXW6Xf3DsnHWy_Zx-CqgCZgZ9-sLv_ueTXk28ns_UfsBik-g</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Babilotte, Joanna</creator><creator>Guduric, Vera</creator><creator>Le Nihouannen, Damien</creator><creator>Naveau, Adrien</creator><creator>Fricain, Jean‐Christophe</creator><creator>Catros, Sylvain</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201911</creationdate><title>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</title><author>Babilotte, Joanna ; Guduric, Vera ; Le Nihouannen, Damien ; Naveau, Adrien ; Fricain, Jean‐Christophe ; Catros, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4608-233bbcb7790856857426b8c98bdf99f048938e91fac5afef00c6b8ad1f6873b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>bone regeneration</topic><topic>Bones</topic><topic>calcium phosphate(s)</topic><topic>ceramic</topic><topic>Composite materials</topic><topic>Fabrication</topic><topic>Formulations</topic><topic>Life Sciences</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Minerals</topic><topic>polymer</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babilotte, Joanna</creatorcontrib><creatorcontrib>Guduric, Vera</creatorcontrib><creatorcontrib>Le Nihouannen, Damien</creatorcontrib><creatorcontrib>Naveau, Adrien</creatorcontrib><creatorcontrib>Fricain, Jean‐Christophe</creatorcontrib><creatorcontrib>Catros, Sylvain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babilotte, Joanna</au><au>Guduric, Vera</au><au>Le Nihouannen, Damien</au><au>Naveau, Adrien</au><au>Fricain, Jean‐Christophe</au><au>Catros, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2019-11</date><risdate>2019</risdate><volume>107</volume><issue>8</issue><spage>2579</spage><epage>2595</epage><pages>2579-2595</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three‐dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state‐of‐the‐art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579–2595, 2019.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30848068</pmid><doi>10.1002/jbm.b.34348</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2019-11, Vol.107 (8), p.2579-2595 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_02870512v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D printing Biological activity Biomaterials Biomedical materials Bone biomaterials Bone growth Bone healing bone regeneration Bones calcium phosphate(s) ceramic Composite materials Fabrication Formulations Life Sciences Materials research Materials science Minerals polymer Polymer matrix composites Polymers Properties (attributes) Regeneration Regeneration (physiology) Scaffolds Three dimensional composites Three dimensional printing Tissue engineering |
title | 3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20polymer%E2%80%93mineral%20composite%20biomaterials%20for%20bone%20tissue%20engineering:%20Fabrication%20and%20characterization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Babilotte,%20Joanna&rft.date=2019-11&rft.volume=107&rft.issue=8&rft.spage=2579&rft.epage=2595&rft.pages=2579-2595&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34348&rft_dat=%3Cproquest_hal_p%3E2189531974%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300062495&rft_id=info:pmid/30848068&rfr_iscdi=true |