Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta

Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Placenta (Eastbourne) 2012-02, Vol.33, p.S81-S86
Hauptverfasser: Pidoux, G, Gerbaud, P, Cocquebert, M, Segond, N, Badet, J, Fournier, T, Guibourdenche, J, Evain-Brion, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S86
container_issue
container_start_page S81
container_title Placenta (Eastbourne)
container_volume 33
creator Pidoux, G
Gerbaud, P
Cocquebert, M
Segond, N
Badet, J
Fournier, T
Guibourdenche, J
Evain-Brion, D
description Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.
doi_str_mv 10.1016/j.placenta.2011.11.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_02556136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014340041100539X</els_id><sourcerecordid>919227966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</originalsourceid><addsrcrecordid>eNqFUl1rFDEUDaLYtfoXyrz54m7vTSaZSR_EUqpbWBD8wreQySQ060yyJjOV_fdm2W4ffBEuBML5SM65hFwgrBBQXG5Xu0EbGya9ooC4KgPQPCML5IwuGQJ9ThaANVvWAPUZeZXzFgBkjfQlOaMUWQsCFuTHF_vg7Z-raj2POlRTirv72A06T5Wbs4-h0qGveu-cTcXN66ncXVUbm3MMuXIpjoXkcxz3FcXq9KjX5IXTQ7ZvHs9z8v3j7beb9XLz-dPdzfVmaTjl01K0spa2B-cao7lmtawbxhoHPetb3era8bY1WnZ157hrBEKnJToJlosOsWPn5N1R914Papf8qNNeRe3V-nqjfMg2jQoo5wKZeMACf3uE71L8Pds8qdFnY4dBBxvnrCRKShspREGKI9KkmHOy7kkdQR0aUFt1-qw6NKDKlAYK8eLRYu5G2z_RTpEXwIcjwJZcSvZJZeNtMLb3yZpJ9dH_3-P9PxJm8MEbPfyye5u3cU6hpK5QZapAfT3swWENEAE4kz_ZXz7Hr1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919227966</pqid></control><display><type>article</type><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</creator><creatorcontrib>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</creatorcontrib><description>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</description><identifier>ISSN: 0143-4004</identifier><identifier>EISSN: 1532-3102</identifier><identifier>DOI: 10.1016/j.placenta.2011.11.007</identifier><identifier>PMID: 22138060</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Cell Communication ; Cell Differentiation ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Biology ; Chorionic Gonadotropin - genetics ; Chorionic Gonadotropin - metabolism ; Down Syndrome - metabolism ; Down Syndrome - pathology ; Down Syndrome - physiopathology ; Female ; Gene Expression Regulation, Developmental ; Glycosylation ; hCG ; Human placenta ; Humans ; Internal Medicine ; Life Sciences ; Mesenchymal cells ; Obstetrics and Gynecology ; Oxidative Stress ; Placenta - cytology ; Placenta - pathology ; Placenta - physiology ; Placenta - physiopathology ; Placentation ; Pregnancy ; Pregnancy Proteins - genetics ; Pregnancy Proteins - metabolism ; Protein Processing, Post-Translational ; Receptors, LH - genetics ; Receptors, LH - metabolism ; Reproductive Biology ; Sexual reproduction ; Signal Transduction ; Syncytiotrophoblast ; Trisomy 21 ; Trophoblasts - cytology ; Trophoblasts - physiology</subject><ispartof>Placenta (Eastbourne), 2012-02, Vol.33, p.S81-S86</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</citedby><cites>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014340041100539X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22138060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02556136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pidoux, G</creatorcontrib><creatorcontrib>Gerbaud, P</creatorcontrib><creatorcontrib>Cocquebert, M</creatorcontrib><creatorcontrib>Segond, N</creatorcontrib><creatorcontrib>Badet, J</creatorcontrib><creatorcontrib>Fournier, T</creatorcontrib><creatorcontrib>Guibourdenche, J</creatorcontrib><creatorcontrib>Evain-Brion, D</creatorcontrib><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><title>Placenta (Eastbourne)</title><addtitle>Placenta</addtitle><description>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</description><subject>Cell Communication</subject><subject>Cell Differentiation</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Chorionic Gonadotropin - genetics</subject><subject>Chorionic Gonadotropin - metabolism</subject><subject>Down Syndrome - metabolism</subject><subject>Down Syndrome - pathology</subject><subject>Down Syndrome - physiopathology</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glycosylation</subject><subject>hCG</subject><subject>Human placenta</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Life Sciences</subject><subject>Mesenchymal cells</subject><subject>Obstetrics and Gynecology</subject><subject>Oxidative Stress</subject><subject>Placenta - cytology</subject><subject>Placenta - pathology</subject><subject>Placenta - physiology</subject><subject>Placenta - physiopathology</subject><subject>Placentation</subject><subject>Pregnancy</subject><subject>Pregnancy Proteins - genetics</subject><subject>Pregnancy Proteins - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Receptors, LH - genetics</subject><subject>Receptors, LH - metabolism</subject><subject>Reproductive Biology</subject><subject>Sexual reproduction</subject><subject>Signal Transduction</subject><subject>Syncytiotrophoblast</subject><subject>Trisomy 21</subject><subject>Trophoblasts - cytology</subject><subject>Trophoblasts - physiology</subject><issn>0143-4004</issn><issn>1532-3102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUl1rFDEUDaLYtfoXyrz54m7vTSaZSR_EUqpbWBD8wreQySQ060yyJjOV_fdm2W4ffBEuBML5SM65hFwgrBBQXG5Xu0EbGya9ooC4KgPQPCML5IwuGQJ9ThaANVvWAPUZeZXzFgBkjfQlOaMUWQsCFuTHF_vg7Z-raj2POlRTirv72A06T5Wbs4-h0qGveu-cTcXN66ncXVUbm3MMuXIpjoXkcxz3FcXq9KjX5IXTQ7ZvHs9z8v3j7beb9XLz-dPdzfVmaTjl01K0spa2B-cao7lmtawbxhoHPetb3era8bY1WnZ157hrBEKnJToJlosOsWPn5N1R914Papf8qNNeRe3V-nqjfMg2jQoo5wKZeMACf3uE71L8Pds8qdFnY4dBBxvnrCRKShspREGKI9KkmHOy7kkdQR0aUFt1-qw6NKDKlAYK8eLRYu5G2z_RTpEXwIcjwJZcSvZJZeNtMLb3yZpJ9dH_3-P9PxJm8MEbPfyye5u3cU6hpK5QZapAfT3swWENEAE4kz_ZXz7Hr1M</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Pidoux, G</creator><creator>Gerbaud, P</creator><creator>Cocquebert, M</creator><creator>Segond, N</creator><creator>Badet, J</creator><creator>Fournier, T</creator><creator>Guibourdenche, J</creator><creator>Evain-Brion, D</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120201</creationdate><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><author>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Communication</topic><topic>Cell Differentiation</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Chorionic Gonadotropin - genetics</topic><topic>Chorionic Gonadotropin - metabolism</topic><topic>Down Syndrome - metabolism</topic><topic>Down Syndrome - pathology</topic><topic>Down Syndrome - physiopathology</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glycosylation</topic><topic>hCG</topic><topic>Human placenta</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Life Sciences</topic><topic>Mesenchymal cells</topic><topic>Obstetrics and Gynecology</topic><topic>Oxidative Stress</topic><topic>Placenta - cytology</topic><topic>Placenta - pathology</topic><topic>Placenta - physiology</topic><topic>Placenta - physiopathology</topic><topic>Placentation</topic><topic>Pregnancy</topic><topic>Pregnancy Proteins - genetics</topic><topic>Pregnancy Proteins - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Receptors, LH - genetics</topic><topic>Receptors, LH - metabolism</topic><topic>Reproductive Biology</topic><topic>Sexual reproduction</topic><topic>Signal Transduction</topic><topic>Syncytiotrophoblast</topic><topic>Trisomy 21</topic><topic>Trophoblasts - cytology</topic><topic>Trophoblasts - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pidoux, G</creatorcontrib><creatorcontrib>Gerbaud, P</creatorcontrib><creatorcontrib>Cocquebert, M</creatorcontrib><creatorcontrib>Segond, N</creatorcontrib><creatorcontrib>Badet, J</creatorcontrib><creatorcontrib>Fournier, T</creatorcontrib><creatorcontrib>Guibourdenche, J</creatorcontrib><creatorcontrib>Evain-Brion, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Placenta (Eastbourne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pidoux, G</au><au>Gerbaud, P</au><au>Cocquebert, M</au><au>Segond, N</au><au>Badet, J</au><au>Fournier, T</au><au>Guibourdenche, J</au><au>Evain-Brion, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</atitle><jtitle>Placenta (Eastbourne)</jtitle><addtitle>Placenta</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>33</volume><spage>S81</spage><epage>S86</epage><pages>S81-S86</pages><issn>0143-4004</issn><eissn>1532-3102</eissn><abstract>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22138060</pmid><doi>10.1016/j.placenta.2011.11.007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-4004
ispartof Placenta (Eastbourne), 2012-02, Vol.33, p.S81-S86
issn 0143-4004
1532-3102
language eng
recordid cdi_hal_primary_oai_HAL_inserm_02556136v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cell Communication
Cell Differentiation
Cell Fusion
Cell Line
Cells, Cultured
Cellular Biology
Chorionic Gonadotropin - genetics
Chorionic Gonadotropin - metabolism
Down Syndrome - metabolism
Down Syndrome - pathology
Down Syndrome - physiopathology
Female
Gene Expression Regulation, Developmental
Glycosylation
hCG
Human placenta
Humans
Internal Medicine
Life Sciences
Mesenchymal cells
Obstetrics and Gynecology
Oxidative Stress
Placenta - cytology
Placenta - pathology
Placenta - physiology
Placenta - physiopathology
Placentation
Pregnancy
Pregnancy Proteins - genetics
Pregnancy Proteins - metabolism
Protein Processing, Post-Translational
Receptors, LH - genetics
Receptors, LH - metabolism
Reproductive Biology
Sexual reproduction
Signal Transduction
Syncytiotrophoblast
Trisomy 21
Trophoblasts - cytology
Trophoblasts - physiology
title Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20Human%20trophoblast%20fusion%20and%20differentiation:%20Lessons%20from%20trisomy%2021%20placenta&rft.jtitle=Placenta%20(Eastbourne)&rft.au=Pidoux,%20G&rft.date=2012-02-01&rft.volume=33&rft.spage=S81&rft.epage=S86&rft.pages=S81-S86&rft.issn=0143-4004&rft.eissn=1532-3102&rft_id=info:doi/10.1016/j.placenta.2011.11.007&rft_dat=%3Cproquest_hal_p%3E919227966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919227966&rft_id=info:pmid/22138060&rft_els_id=S014340041100539X&rfr_iscdi=true