Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta
Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration...
Gespeichert in:
Veröffentlicht in: | Placenta (Eastbourne) 2012-02, Vol.33, p.S81-S86 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S86 |
---|---|
container_issue | |
container_start_page | S81 |
container_title | Placenta (Eastbourne) |
container_volume | 33 |
creator | Pidoux, G Gerbaud, P Cocquebert, M Segond, N Badet, J Fournier, T Guibourdenche, J Evain-Brion, D |
description | Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions. |
doi_str_mv | 10.1016/j.placenta.2011.11.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_02556136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014340041100539X</els_id><sourcerecordid>919227966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</originalsourceid><addsrcrecordid>eNqFUl1rFDEUDaLYtfoXyrz54m7vTSaZSR_EUqpbWBD8wreQySQ060yyJjOV_fdm2W4ffBEuBML5SM65hFwgrBBQXG5Xu0EbGya9ooC4KgPQPCML5IwuGQJ9ThaANVvWAPUZeZXzFgBkjfQlOaMUWQsCFuTHF_vg7Z-raj2POlRTirv72A06T5Wbs4-h0qGveu-cTcXN66ncXVUbm3MMuXIpjoXkcxz3FcXq9KjX5IXTQ7ZvHs9z8v3j7beb9XLz-dPdzfVmaTjl01K0spa2B-cao7lmtawbxhoHPetb3era8bY1WnZ157hrBEKnJToJlosOsWPn5N1R914Papf8qNNeRe3V-nqjfMg2jQoo5wKZeMACf3uE71L8Pds8qdFnY4dBBxvnrCRKShspREGKI9KkmHOy7kkdQR0aUFt1-qw6NKDKlAYK8eLRYu5G2z_RTpEXwIcjwJZcSvZJZeNtMLb3yZpJ9dH_3-P9PxJm8MEbPfyye5u3cU6hpK5QZapAfT3swWENEAE4kz_ZXz7Hr1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919227966</pqid></control><display><type>article</type><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</creator><creatorcontrib>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</creatorcontrib><description>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</description><identifier>ISSN: 0143-4004</identifier><identifier>EISSN: 1532-3102</identifier><identifier>DOI: 10.1016/j.placenta.2011.11.007</identifier><identifier>PMID: 22138060</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Cell Communication ; Cell Differentiation ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Biology ; Chorionic Gonadotropin - genetics ; Chorionic Gonadotropin - metabolism ; Down Syndrome - metabolism ; Down Syndrome - pathology ; Down Syndrome - physiopathology ; Female ; Gene Expression Regulation, Developmental ; Glycosylation ; hCG ; Human placenta ; Humans ; Internal Medicine ; Life Sciences ; Mesenchymal cells ; Obstetrics and Gynecology ; Oxidative Stress ; Placenta - cytology ; Placenta - pathology ; Placenta - physiology ; Placenta - physiopathology ; Placentation ; Pregnancy ; Pregnancy Proteins - genetics ; Pregnancy Proteins - metabolism ; Protein Processing, Post-Translational ; Receptors, LH - genetics ; Receptors, LH - metabolism ; Reproductive Biology ; Sexual reproduction ; Signal Transduction ; Syncytiotrophoblast ; Trisomy 21 ; Trophoblasts - cytology ; Trophoblasts - physiology</subject><ispartof>Placenta (Eastbourne), 2012-02, Vol.33, p.S81-S86</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</citedby><cites>FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014340041100539X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22138060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02556136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pidoux, G</creatorcontrib><creatorcontrib>Gerbaud, P</creatorcontrib><creatorcontrib>Cocquebert, M</creatorcontrib><creatorcontrib>Segond, N</creatorcontrib><creatorcontrib>Badet, J</creatorcontrib><creatorcontrib>Fournier, T</creatorcontrib><creatorcontrib>Guibourdenche, J</creatorcontrib><creatorcontrib>Evain-Brion, D</creatorcontrib><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><title>Placenta (Eastbourne)</title><addtitle>Placenta</addtitle><description>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</description><subject>Cell Communication</subject><subject>Cell Differentiation</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Chorionic Gonadotropin - genetics</subject><subject>Chorionic Gonadotropin - metabolism</subject><subject>Down Syndrome - metabolism</subject><subject>Down Syndrome - pathology</subject><subject>Down Syndrome - physiopathology</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glycosylation</subject><subject>hCG</subject><subject>Human placenta</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Life Sciences</subject><subject>Mesenchymal cells</subject><subject>Obstetrics and Gynecology</subject><subject>Oxidative Stress</subject><subject>Placenta - cytology</subject><subject>Placenta - pathology</subject><subject>Placenta - physiology</subject><subject>Placenta - physiopathology</subject><subject>Placentation</subject><subject>Pregnancy</subject><subject>Pregnancy Proteins - genetics</subject><subject>Pregnancy Proteins - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Receptors, LH - genetics</subject><subject>Receptors, LH - metabolism</subject><subject>Reproductive Biology</subject><subject>Sexual reproduction</subject><subject>Signal Transduction</subject><subject>Syncytiotrophoblast</subject><subject>Trisomy 21</subject><subject>Trophoblasts - cytology</subject><subject>Trophoblasts - physiology</subject><issn>0143-4004</issn><issn>1532-3102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUl1rFDEUDaLYtfoXyrz54m7vTSaZSR_EUqpbWBD8wreQySQ060yyJjOV_fdm2W4ffBEuBML5SM65hFwgrBBQXG5Xu0EbGya9ooC4KgPQPCML5IwuGQJ9ThaANVvWAPUZeZXzFgBkjfQlOaMUWQsCFuTHF_vg7Z-raj2POlRTirv72A06T5Wbs4-h0qGveu-cTcXN66ncXVUbm3MMuXIpjoXkcxz3FcXq9KjX5IXTQ7ZvHs9z8v3j7beb9XLz-dPdzfVmaTjl01K0spa2B-cao7lmtawbxhoHPetb3era8bY1WnZ157hrBEKnJToJlosOsWPn5N1R914Papf8qNNeRe3V-nqjfMg2jQoo5wKZeMACf3uE71L8Pds8qdFnY4dBBxvnrCRKShspREGKI9KkmHOy7kkdQR0aUFt1-qw6NKDKlAYK8eLRYu5G2z_RTpEXwIcjwJZcSvZJZeNtMLb3yZpJ9dH_3-P9PxJm8MEbPfyye5u3cU6hpK5QZapAfT3swWENEAE4kz_ZXz7Hr1M</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Pidoux, G</creator><creator>Gerbaud, P</creator><creator>Cocquebert, M</creator><creator>Segond, N</creator><creator>Badet, J</creator><creator>Fournier, T</creator><creator>Guibourdenche, J</creator><creator>Evain-Brion, D</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120201</creationdate><title>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</title><author>Pidoux, G ; Gerbaud, P ; Cocquebert, M ; Segond, N ; Badet, J ; Fournier, T ; Guibourdenche, J ; Evain-Brion, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-68949ed0ff7ca5a34947337f0d3d8a8a4f588ca9b4bf5f7610ba91f90e56b11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Communication</topic><topic>Cell Differentiation</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Chorionic Gonadotropin - genetics</topic><topic>Chorionic Gonadotropin - metabolism</topic><topic>Down Syndrome - metabolism</topic><topic>Down Syndrome - pathology</topic><topic>Down Syndrome - physiopathology</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glycosylation</topic><topic>hCG</topic><topic>Human placenta</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Life Sciences</topic><topic>Mesenchymal cells</topic><topic>Obstetrics and Gynecology</topic><topic>Oxidative Stress</topic><topic>Placenta - cytology</topic><topic>Placenta - pathology</topic><topic>Placenta - physiology</topic><topic>Placenta - physiopathology</topic><topic>Placentation</topic><topic>Pregnancy</topic><topic>Pregnancy Proteins - genetics</topic><topic>Pregnancy Proteins - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Receptors, LH - genetics</topic><topic>Receptors, LH - metabolism</topic><topic>Reproductive Biology</topic><topic>Sexual reproduction</topic><topic>Signal Transduction</topic><topic>Syncytiotrophoblast</topic><topic>Trisomy 21</topic><topic>Trophoblasts - cytology</topic><topic>Trophoblasts - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pidoux, G</creatorcontrib><creatorcontrib>Gerbaud, P</creatorcontrib><creatorcontrib>Cocquebert, M</creatorcontrib><creatorcontrib>Segond, N</creatorcontrib><creatorcontrib>Badet, J</creatorcontrib><creatorcontrib>Fournier, T</creatorcontrib><creatorcontrib>Guibourdenche, J</creatorcontrib><creatorcontrib>Evain-Brion, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Placenta (Eastbourne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pidoux, G</au><au>Gerbaud, P</au><au>Cocquebert, M</au><au>Segond, N</au><au>Badet, J</au><au>Fournier, T</au><au>Guibourdenche, J</au><au>Evain-Brion, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta</atitle><jtitle>Placenta (Eastbourne)</jtitle><addtitle>Placenta</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>33</volume><spage>S81</spage><epage>S86</epage><pages>S81-S86</pages><issn>0143-4004</issn><eissn>1532-3102</eissn><abstract>Abstract The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22138060</pmid><doi>10.1016/j.placenta.2011.11.007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-4004 |
ispartof | Placenta (Eastbourne), 2012-02, Vol.33, p.S81-S86 |
issn | 0143-4004 1532-3102 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_02556136v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cell Communication Cell Differentiation Cell Fusion Cell Line Cells, Cultured Cellular Biology Chorionic Gonadotropin - genetics Chorionic Gonadotropin - metabolism Down Syndrome - metabolism Down Syndrome - pathology Down Syndrome - physiopathology Female Gene Expression Regulation, Developmental Glycosylation hCG Human placenta Humans Internal Medicine Life Sciences Mesenchymal cells Obstetrics and Gynecology Oxidative Stress Placenta - cytology Placenta - pathology Placenta - physiology Placenta - physiopathology Placentation Pregnancy Pregnancy Proteins - genetics Pregnancy Proteins - metabolism Protein Processing, Post-Translational Receptors, LH - genetics Receptors, LH - metabolism Reproductive Biology Sexual reproduction Signal Transduction Syncytiotrophoblast Trisomy 21 Trophoblasts - cytology Trophoblasts - physiology |
title | Review: Human trophoblast fusion and differentiation: Lessons from trisomy 21 placenta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20Human%20trophoblast%20fusion%20and%20differentiation:%20Lessons%20from%20trisomy%2021%20placenta&rft.jtitle=Placenta%20(Eastbourne)&rft.au=Pidoux,%20G&rft.date=2012-02-01&rft.volume=33&rft.spage=S81&rft.epage=S86&rft.pages=S81-S86&rft.issn=0143-4004&rft.eissn=1532-3102&rft_id=info:doi/10.1016/j.placenta.2011.11.007&rft_dat=%3Cproquest_hal_p%3E919227966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919227966&rft_id=info:pmid/22138060&rft_els_id=S014340041100539X&rfr_iscdi=true |