Complex molecular assemblies at hand via interactive simulations
Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypothe...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2009-11, Vol.30 (15), p.2375-2387 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2387 |
---|---|
container_issue | 15 |
container_start_page | 2375 |
container_title | Journal of computational chemistry |
container_volume | 30 |
creator | Delalande, Olivier Férey, Nicolas Grasseau, Gilles Baaden, Marc |
description | Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example. |
doi_str_mv | 10.1002/jcc.21235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00713313v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733290597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-c102bcbd133fc1c0649c2949924c8bfa70346058121d36932d4c659448f0ff993</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALgehQWPACELFBSKS9146deNcqajugESymBXaW4zjUQ34GO5m2b49LhiIh4Y033z2yzyXkJcIRAtDjjTFHFCnjj8gCQYpUFvm3x2QBKGlaCI4H5FkIGwBgXGRPyQFKxhmX-YKclEO3be1t0g2tNVOrfaJDsF3VOhsSPSbXuq-TndOJ60frtRndzibBdZGObujDc_Kk0W2wL_b3Ibk6P7ssl-nq88WH8nSVmowDTw0CrUxVI2ONQQMik4bKTEqamaJqdA4sE8ALpFgzIRmtMyO4zLKigaaRkh2S93PutW7V1rtO-zs1aKeWpyvl-mB9pwDymI9sh5G_nfnWDz8nG0bVuWBs2-reDlNQOWNUQqwgyjf_yM0w-T7-RdF4pBR4j97NyPghBG-bhycgqPsdqLgD9XsH0b7aB05VZ-u_cl96BMczuHGtvft_kvpYln8i03nChdHePkxo_0OJnOVcff10oQDPL9frL4VaRv969o0elP7uXVBXawrIAEUROxLsF476pdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222299617</pqid></control><display><type>article</type><title>Complex molecular assemblies at hand via interactive simulations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Delalande, Olivier ; Férey, Nicolas ; Grasseau, Gilles ; Baaden, Marc</creator><creatorcontrib>Delalande, Olivier ; Férey, Nicolas ; Grasseau, Gilles ; Baaden, Marc</creatorcontrib><description>Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.21235</identifier><identifier>PMID: 19353597</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; Bacterial Outer Membrane Proteins ; Bacterial Outer Membrane Proteins - chemistry ; Biochemistry, Molecular Biology ; Computer Simulation ; Escherichia coli Proteins ; Escherichia coli Proteins - chemistry ; Guanylate Kinase ; Guanylate Kinases - chemistry ; Guanylate Kinases - metabolism ; interactive molecular dynamics ; Life Sciences ; Models, Chemical ; Models, Molecular ; Molecular chemistry ; Molecules ; OmpT enzyme ; Peptide Hydrolases ; Peptide Hydrolases - chemistry ; Simulation ; SNARE complex ; SNARE Proteins ; SNARE Proteins - chemistry ; Software ; Studies ; virtual reality</subject><ispartof>Journal of computational chemistry, 2009-11, Vol.30 (15), p.2375-2387</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>Copyright 2009 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-c102bcbd133fc1c0649c2949924c8bfa70346058121d36932d4c659448f0ff993</citedby><cites>FETCH-LOGICAL-c4505-c102bcbd133fc1c0649c2949924c8bfa70346058121d36932d4c659448f0ff993</cites><orcidid>0000-0002-7713-001X ; 0000-0001-6472-0486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.21235$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.21235$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19353597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00713313$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delalande, Olivier</creatorcontrib><creatorcontrib>Férey, Nicolas</creatorcontrib><creatorcontrib>Grasseau, Gilles</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><title>Complex molecular assemblies at hand via interactive simulations</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example.</description><subject>Analytical chemistry</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computer Simulation</subject><subject>Escherichia coli Proteins</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Guanylate Kinase</subject><subject>Guanylate Kinases - chemistry</subject><subject>Guanylate Kinases - metabolism</subject><subject>interactive molecular dynamics</subject><subject>Life Sciences</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular chemistry</subject><subject>Molecules</subject><subject>OmpT enzyme</subject><subject>Peptide Hydrolases</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Simulation</subject><subject>SNARE complex</subject><subject>SNARE Proteins</subject><subject>SNARE Proteins - chemistry</subject><subject>Software</subject><subject>Studies</subject><subject>virtual reality</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAUBWALgehQWPACELFBSKS9146deNcqajugESymBXaW4zjUQ34GO5m2b49LhiIh4Y033z2yzyXkJcIRAtDjjTFHFCnjj8gCQYpUFvm3x2QBKGlaCI4H5FkIGwBgXGRPyQFKxhmX-YKclEO3be1t0g2tNVOrfaJDsF3VOhsSPSbXuq-TndOJ60frtRndzibBdZGObujDc_Kk0W2wL_b3Ibk6P7ssl-nq88WH8nSVmowDTw0CrUxVI2ONQQMik4bKTEqamaJqdA4sE8ALpFgzIRmtMyO4zLKigaaRkh2S93PutW7V1rtO-zs1aKeWpyvl-mB9pwDymI9sh5G_nfnWDz8nG0bVuWBs2-reDlNQOWNUQqwgyjf_yM0w-T7-RdF4pBR4j97NyPghBG-bhycgqPsdqLgD9XsH0b7aB05VZ-u_cl96BMczuHGtvft_kvpYln8i03nChdHePkxo_0OJnOVcff10oQDPL9frL4VaRv969o0elP7uXVBXawrIAEUROxLsF476pdk</recordid><startdate>20091130</startdate><enddate>20091130</enddate><creator>Delalande, Olivier</creator><creator>Férey, Nicolas</creator><creator>Grasseau, Gilles</creator><creator>Baaden, Marc</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7713-001X</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid></search><sort><creationdate>20091130</creationdate><title>Complex molecular assemblies at hand via interactive simulations</title><author>Delalande, Olivier ; Férey, Nicolas ; Grasseau, Gilles ; Baaden, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-c102bcbd133fc1c0649c2949924c8bfa70346058121d36932d4c659448f0ff993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computer Simulation</topic><topic>Escherichia coli Proteins</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Guanylate Kinase</topic><topic>Guanylate Kinases - chemistry</topic><topic>Guanylate Kinases - metabolism</topic><topic>interactive molecular dynamics</topic><topic>Life Sciences</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular chemistry</topic><topic>Molecules</topic><topic>OmpT enzyme</topic><topic>Peptide Hydrolases</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Simulation</topic><topic>SNARE complex</topic><topic>SNARE Proteins</topic><topic>SNARE Proteins - chemistry</topic><topic>Software</topic><topic>Studies</topic><topic>virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delalande, Olivier</creatorcontrib><creatorcontrib>Férey, Nicolas</creatorcontrib><creatorcontrib>Grasseau, Gilles</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delalande, Olivier</au><au>Férey, Nicolas</au><au>Grasseau, Gilles</au><au>Baaden, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex molecular assemblies at hand via interactive simulations</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2009-11-30</date><risdate>2009</risdate><volume>30</volume><issue>15</issue><spage>2375</spage><epage>2387</epage><pages>2375-2387</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19353597</pmid><doi>10.1002/jcc.21235</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7713-001X</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2009-11, Vol.30 (15), p.2375-2387 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00713313v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Analytical chemistry Bacterial Outer Membrane Proteins Bacterial Outer Membrane Proteins - chemistry Biochemistry, Molecular Biology Computer Simulation Escherichia coli Proteins Escherichia coli Proteins - chemistry Guanylate Kinase Guanylate Kinases - chemistry Guanylate Kinases - metabolism interactive molecular dynamics Life Sciences Models, Chemical Models, Molecular Molecular chemistry Molecules OmpT enzyme Peptide Hydrolases Peptide Hydrolases - chemistry Simulation SNARE complex SNARE Proteins SNARE Proteins - chemistry Software Studies virtual reality |
title | Complex molecular assemblies at hand via interactive simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20molecular%20assemblies%20at%20hand%20via%20interactive%20simulations&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Delalande,%20Olivier&rft.date=2009-11-30&rft.volume=30&rft.issue=15&rft.spage=2375&rft.epage=2387&rft.pages=2375-2387&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.21235&rft_dat=%3Cproquest_hal_p%3E733290597%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222299617&rft_id=info:pmid/19353597&rfr_iscdi=true |