Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims

Drug claims databases are increasingly available and provide opportunities to investigate epidemiologic questions. The authors used computerized drug claims databases from a social security system in 5 French districts to predict the probability that a person had Parkinson's disease (PD) based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2011-08, Vol.174 (3), p.354-363
Hauptverfasser: Moisan, Frédéric, Gourlet, Véronique, Mazurie, Jean-Louis, Dupupet, Jean-Luc, Houssinot, Jean, Goldberg, Marcel, Imbernon, Ellen, Tzourio, Christophe, Elbaz, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 3
container_start_page 354
container_title American journal of epidemiology
container_volume 174
creator Moisan, Frédéric
Gourlet, Véronique
Mazurie, Jean-Louis
Dupupet, Jean-Luc
Houssinot, Jean
Goldberg, Marcel
Imbernon, Ellen
Tzourio, Christophe
Elbaz, Alexis
description Drug claims databases are increasingly available and provide opportunities to investigate epidemiologic questions. The authors used computerized drug claims databases from a social security system in 5 French districts to predict the probability that a person had Parkinson's disease (PD) based on patterns of antiparkinsonian drug (APD) use. Clinical information for a population-based sample of persons using APDs in 2007 was collected. The authors built a prediction model using demographic variables and APDs as predictors and investigated the additional predictive benefit of including information on dose and regularity of use. Among 1,114 APD users, 320 (29%) had PD and 794 (71%) had another diagnosis as determined by study neurologists. A logistic model including information on cumulative APD dose and regularity of use showed good performance (c statistic = 0.953, sensitivity = 92.5%, specificity = 86.4%). Predicted PD prevalence (among persons aged ≥18 years) was 6.66/1,000; correcting this estimate using sensitivity/specificity led to a similar figure (6.04/1,000). These data demonstrate that drug claims databases can be used to estimate the probability that a person is being treated for PD and that information on APD dose and regularity of use improves models' performances. Similar approaches could be developed for other conditions.
doi_str_mv 10.1093/aje/kwr081
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00598500v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwr081</oup_id><sourcerecordid>2436698231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-47b2770aeb78448063499e1afa7dacef22304c0fa191bb6a96cdd9465b1589423</originalsourceid><addsrcrecordid>eNp90U9PFDEYBvDGaGAFLn4AMzExGMPA206nf47romKyBA54bt7pdLTLzHRpdzR-e4u7QOKBS3v55enb9yHkDYVTCro6w5U7u_0dQdEXZEa5FKVgtXhJZgDASs0E2yevU1oBUKpr2CP7jAoQrOIzcnkdXevtxoexuAyt64vQFdcYb_2YwnicinOfHCZXfMpHW2Q1Hzd-_QA8jsV5nH4Uix79kA7Jqw775I529wH5_uXzzeKiXF59_baYL0vLpd6UXDZMSkDXSMW5AlFxrR3FDmWL1nWMVcAtdEg1bRqBWti21VzUDa2V5qw6ICfb3J_Ym3X0A8Y_JqA3F_OlyYO5OBiAWqsa4BfN_HjL1zHcTS5tzOCTdX2PowtTMkoqxWjmWX54Vt7vm3OqQWb67j-6ClMc87eNUjVXlWSQ0cctsjGkFF33OC2Ff2Eml2e25WX8dpc4NYNrH-lDWxm83wFMFvsu4mh9enKcA1RMPLkwrZ978C-Teqxn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885483720</pqid></control><display><type>article</type><title>Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Moisan, Frédéric ; Gourlet, Véronique ; Mazurie, Jean-Louis ; Dupupet, Jean-Luc ; Houssinot, Jean ; Goldberg, Marcel ; Imbernon, Ellen ; Tzourio, Christophe ; Elbaz, Alexis</creator><creatorcontrib>Moisan, Frédéric ; Gourlet, Véronique ; Mazurie, Jean-Louis ; Dupupet, Jean-Luc ; Houssinot, Jean ; Goldberg, Marcel ; Imbernon, Ellen ; Tzourio, Christophe ; Elbaz, Alexis</creatorcontrib><description>Drug claims databases are increasingly available and provide opportunities to investigate epidemiologic questions. The authors used computerized drug claims databases from a social security system in 5 French districts to predict the probability that a person had Parkinson's disease (PD) based on patterns of antiparkinsonian drug (APD) use. Clinical information for a population-based sample of persons using APDs in 2007 was collected. The authors built a prediction model using demographic variables and APDs as predictors and investigated the additional predictive benefit of including information on dose and regularity of use. Among 1,114 APD users, 320 (29%) had PD and 794 (71%) had another diagnosis as determined by study neurologists. A logistic model including information on cumulative APD dose and regularity of use showed good performance (c statistic = 0.953, sensitivity = 92.5%, specificity = 86.4%). Predicted PD prevalence (among persons aged ≥18 years) was 6.66/1,000; correcting this estimate using sensitivity/specificity led to a similar figure (6.04/1,000). These data demonstrate that drug claims databases can be used to estimate the probability that a person is being treated for PD and that information on APD dose and regularity of use improves models' performances. Similar approaches could be developed for other conditions.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwr081</identifier><identifier>PMID: 21606234</identifier><identifier>CODEN: AJEPAS</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Aged ; Antiparkinson Agents ; Antiparkinson Agents - therapeutic use ; Biological and medical sciences ; Databases, Factual ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Drug dosages ; Drug therapy ; Epidemiology ; Female ; France ; France - epidemiology ; General aspects ; Humans ; Life Sciences ; Logistic Models ; Male ; Medical prognosis ; Medical sciences ; Middle Aged ; Miscellaneous ; Models, Statistical ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurology ; Parkinson Disease ; Parkinson Disease - drug therapy ; Parkinson Disease - epidemiology ; Parkinson's disease ; Prevalence ; Probability ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Reproducibility of Results ; ROC Curve ; Santé publique et épidémiologie</subject><ispartof>American journal of epidemiology, 2011-08, Vol.174 (3), p.354-363</ispartof><rights>American Journal of Epidemiology © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Aug 1, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-47b2770aeb78448063499e1afa7dacef22304c0fa191bb6a96cdd9465b1589423</citedby><cites>FETCH-LOGICAL-c479t-47b2770aeb78448063499e1afa7dacef22304c0fa191bb6a96cdd9465b1589423</cites><orcidid>0000-0002-6161-5880 ; 0000-0001-9724-5490 ; 0000-0002-6517-2984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24400326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21606234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00598500$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moisan, Frédéric</creatorcontrib><creatorcontrib>Gourlet, Véronique</creatorcontrib><creatorcontrib>Mazurie, Jean-Louis</creatorcontrib><creatorcontrib>Dupupet, Jean-Luc</creatorcontrib><creatorcontrib>Houssinot, Jean</creatorcontrib><creatorcontrib>Goldberg, Marcel</creatorcontrib><creatorcontrib>Imbernon, Ellen</creatorcontrib><creatorcontrib>Tzourio, Christophe</creatorcontrib><creatorcontrib>Elbaz, Alexis</creatorcontrib><title>Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Drug claims databases are increasingly available and provide opportunities to investigate epidemiologic questions. The authors used computerized drug claims databases from a social security system in 5 French districts to predict the probability that a person had Parkinson's disease (PD) based on patterns of antiparkinsonian drug (APD) use. Clinical information for a population-based sample of persons using APDs in 2007 was collected. The authors built a prediction model using demographic variables and APDs as predictors and investigated the additional predictive benefit of including information on dose and regularity of use. Among 1,114 APD users, 320 (29%) had PD and 794 (71%) had another diagnosis as determined by study neurologists. A logistic model including information on cumulative APD dose and regularity of use showed good performance (c statistic = 0.953, sensitivity = 92.5%, specificity = 86.4%). Predicted PD prevalence (among persons aged ≥18 years) was 6.66/1,000; correcting this estimate using sensitivity/specificity led to a similar figure (6.04/1,000). These data demonstrate that drug claims databases can be used to estimate the probability that a person is being treated for PD and that information on APD dose and regularity of use improves models' performances. Similar approaches could be developed for other conditions.</description><subject>Aged</subject><subject>Antiparkinson Agents</subject><subject>Antiparkinson Agents - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Databases, Factual</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Drug dosages</subject><subject>Drug therapy</subject><subject>Epidemiology</subject><subject>Female</subject><subject>France</subject><subject>France - epidemiology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Miscellaneous</subject><subject>Models, Statistical</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurology</subject><subject>Parkinson Disease</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - epidemiology</subject><subject>Parkinson's disease</subject><subject>Prevalence</subject><subject>Probability</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Reproducibility of Results</subject><subject>ROC Curve</subject><subject>Santé publique et épidémiologie</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U9PFDEYBvDGaGAFLn4AMzExGMPA206nf47romKyBA54bt7pdLTLzHRpdzR-e4u7QOKBS3v55enb9yHkDYVTCro6w5U7u_0dQdEXZEa5FKVgtXhJZgDASs0E2yevU1oBUKpr2CP7jAoQrOIzcnkdXevtxoexuAyt64vQFdcYb_2YwnicinOfHCZXfMpHW2Q1Hzd-_QA8jsV5nH4Uix79kA7Jqw775I529wH5_uXzzeKiXF59_baYL0vLpd6UXDZMSkDXSMW5AlFxrR3FDmWL1nWMVcAtdEg1bRqBWti21VzUDa2V5qw6ICfb3J_Ym3X0A8Y_JqA3F_OlyYO5OBiAWqsa4BfN_HjL1zHcTS5tzOCTdX2PowtTMkoqxWjmWX54Vt7vm3OqQWb67j-6ClMc87eNUjVXlWSQ0cctsjGkFF33OC2Ff2Eml2e25WX8dpc4NYNrH-lDWxm83wFMFvsu4mh9enKcA1RMPLkwrZ978C-Teqxn</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Moisan, Frédéric</creator><creator>Gourlet, Véronique</creator><creator>Mazurie, Jean-Louis</creator><creator>Dupupet, Jean-Luc</creator><creator>Houssinot, Jean</creator><creator>Goldberg, Marcel</creator><creator>Imbernon, Ellen</creator><creator>Tzourio, Christophe</creator><creator>Elbaz, Alexis</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6161-5880</orcidid><orcidid>https://orcid.org/0000-0001-9724-5490</orcidid><orcidid>https://orcid.org/0000-0002-6517-2984</orcidid></search><sort><creationdate>20110801</creationdate><title>Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims</title><author>Moisan, Frédéric ; Gourlet, Véronique ; Mazurie, Jean-Louis ; Dupupet, Jean-Luc ; Houssinot, Jean ; Goldberg, Marcel ; Imbernon, Ellen ; Tzourio, Christophe ; Elbaz, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-47b2770aeb78448063499e1afa7dacef22304c0fa191bb6a96cdd9465b1589423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aged</topic><topic>Antiparkinson Agents</topic><topic>Antiparkinson Agents - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Databases, Factual</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Drug dosages</topic><topic>Drug therapy</topic><topic>Epidemiology</topic><topic>Female</topic><topic>France</topic><topic>France - epidemiology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Miscellaneous</topic><topic>Models, Statistical</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurology</topic><topic>Parkinson Disease</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - epidemiology</topic><topic>Parkinson's disease</topic><topic>Prevalence</topic><topic>Probability</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Reproducibility of Results</topic><topic>ROC Curve</topic><topic>Santé publique et épidémiologie</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moisan, Frédéric</creatorcontrib><creatorcontrib>Gourlet, Véronique</creatorcontrib><creatorcontrib>Mazurie, Jean-Louis</creatorcontrib><creatorcontrib>Dupupet, Jean-Luc</creatorcontrib><creatorcontrib>Houssinot, Jean</creatorcontrib><creatorcontrib>Goldberg, Marcel</creatorcontrib><creatorcontrib>Imbernon, Ellen</creatorcontrib><creatorcontrib>Tzourio, Christophe</creatorcontrib><creatorcontrib>Elbaz, Alexis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moisan, Frédéric</au><au>Gourlet, Véronique</au><au>Mazurie, Jean-Louis</au><au>Dupupet, Jean-Luc</au><au>Houssinot, Jean</au><au>Goldberg, Marcel</au><au>Imbernon, Ellen</au><au>Tzourio, Christophe</au><au>Elbaz, Alexis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>174</volume><issue>3</issue><spage>354</spage><epage>363</epage><pages>354-363</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><coden>AJEPAS</coden><abstract>Drug claims databases are increasingly available and provide opportunities to investigate epidemiologic questions. The authors used computerized drug claims databases from a social security system in 5 French districts to predict the probability that a person had Parkinson's disease (PD) based on patterns of antiparkinsonian drug (APD) use. Clinical information for a population-based sample of persons using APDs in 2007 was collected. The authors built a prediction model using demographic variables and APDs as predictors and investigated the additional predictive benefit of including information on dose and regularity of use. Among 1,114 APD users, 320 (29%) had PD and 794 (71%) had another diagnosis as determined by study neurologists. A logistic model including information on cumulative APD dose and regularity of use showed good performance (c statistic = 0.953, sensitivity = 92.5%, specificity = 86.4%). Predicted PD prevalence (among persons aged ≥18 years) was 6.66/1,000; correcting this estimate using sensitivity/specificity led to a similar figure (6.04/1,000). These data demonstrate that drug claims databases can be used to estimate the probability that a person is being treated for PD and that information on APD dose and regularity of use improves models' performances. Similar approaches could be developed for other conditions.</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>21606234</pmid><doi>10.1093/aje/kwr081</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6161-5880</orcidid><orcidid>https://orcid.org/0000-0001-9724-5490</orcidid><orcidid>https://orcid.org/0000-0002-6517-2984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2011-08, Vol.174 (3), p.354-363
issn 0002-9262
1476-6256
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00598500v1
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aged
Antiparkinson Agents
Antiparkinson Agents - therapeutic use
Biological and medical sciences
Databases, Factual
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Drug dosages
Drug therapy
Epidemiology
Female
France
France - epidemiology
General aspects
Humans
Life Sciences
Logistic Models
Male
Medical prognosis
Medical sciences
Middle Aged
Miscellaneous
Models, Statistical
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Parkinson Disease
Parkinson Disease - drug therapy
Parkinson Disease - epidemiology
Parkinson's disease
Prevalence
Probability
Public health. Hygiene
Public health. Hygiene-occupational medicine
Reproducibility of Results
ROC Curve
Santé publique et épidémiologie
title Prediction Model of Parkinson's Disease Based on Antiparkinsonian Drug Claims
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Model%20of%20Parkinson's%20Disease%20Based%20on%20Antiparkinsonian%20Drug%20Claims&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Moisan,%20Fr%C3%A9d%C3%A9ric&rft.date=2011-08-01&rft.volume=174&rft.issue=3&rft.spage=354&rft.epage=363&rft.pages=354-363&rft.issn=0002-9262&rft.eissn=1476-6256&rft.coden=AJEPAS&rft_id=info:doi/10.1093/aje/kwr081&rft_dat=%3Cproquest_hal_p%3E2436698231%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885483720&rft_id=info:pmid/21606234&rft_oup_id=10.1093/aje/kwr081&rfr_iscdi=true