Extracting Information on Flow Direction in Multivariate Time Series

Phase slope index is a measure which aims at detecting causal relation of interdependence in multivariate time series. One drawback of this approach relies in its incapability to distinguish the direct and indirect relations. So, in order to identify only direct relations, we propose to replace the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2011-04, Vol.18 (4), p.251-254
Hauptverfasser: Chunfeng Yang, Le Bouquin Jeannes, Régine, Faucon, Gérard, Huazhong Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 4
container_start_page 251
container_title IEEE signal processing letters
container_volume 18
creator Chunfeng Yang
Le Bouquin Jeannes, Régine
Faucon, Gérard
Huazhong Shu
description Phase slope index is a measure which aims at detecting causal relation of interdependence in multivariate time series. One drawback of this approach relies in its incapability to distinguish the direct and indirect relations. So, in order to identify only direct relations, we propose to replace the ordinary coherence function used in the phase slope index with the partial coherence. Furthermore, we consider and compare two estimators of the coherence functions, the first one based on Fourier transform and the second one on an autoregressive model. In order to cope with the difficult issue of bidirectional flow, which cannot be addressed by the coherence based phase slope index, we propose another index based on the directed transfer function. Experimental results support the relevance of the new indices, both based on autoregressive modeling, in multivariate time series.
doi_str_mv 10.1109/LSP.2011.2109712
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00596701v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5705550</ieee_id><sourcerecordid>oai_HAL_inserm_00596701v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-af905ed5c17083fdc8ad083b8ec2053a1b5bfc3bd0733acc8e2c5491725d3d8e3</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKvvgi_7A9w6kzTd7GPpxRZWFFqfQzY7q5G9SHat-u9NbSkMzJnhnPPwMXaLMEKE9CHbvIw4II54uBLkZ2yAUqqYiwmeBw0JxGkK6pJddd0HAChUcsDmi5_eG9u75i1aN2Xra9O7tonCLKv2O5o7T_b_45ro6avq3c54Z3qKtq6maEPeUXfNLkpTdXRz3EP2ulxsZ6s4e35cz6ZZbMWY97EpU5BUSIsJKFEWVpkiiFyR5SCFwVzmpRV5AYkQxlpF3MpxigmXhSgUiSG7P_S-m0p_elcb_6tb4_RqmmnXdORrDSDTSQK4w2CHg936tus8lacMgt5D0wGa3kPTR2ghcneIOCI62WUCUkoQf-KAaFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extracting Information on Flow Direction in Multivariate Time Series</title><source>IEEE Electronic Library (IEL)</source><creator>Chunfeng Yang ; Le Bouquin Jeannes, Régine ; Faucon, Gérard ; Huazhong Shu</creator><creatorcontrib>Chunfeng Yang ; Le Bouquin Jeannes, Régine ; Faucon, Gérard ; Huazhong Shu</creatorcontrib><description>Phase slope index is a measure which aims at detecting causal relation of interdependence in multivariate time series. One drawback of this approach relies in its incapability to distinguish the direct and indirect relations. So, in order to identify only direct relations, we propose to replace the ordinary coherence function used in the phase slope index with the partial coherence. Furthermore, we consider and compare two estimators of the coherence functions, the first one based on Fourier transform and the second one on an autoregressive model. In order to cope with the difficult issue of bidirectional flow, which cannot be addressed by the coherence based phase slope index, we propose another index based on the directed transfer function. Experimental results support the relevance of the new indices, both based on autoregressive modeling, in multivariate time series.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2011.2109712</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioengineering ; Coherence ; Computer Science ; Density functional theory ; Directed transfer function ; Engineering Sciences ; Fourier transforms ; Indexes ; Life Sciences ; Manganese ; ordinary coherence ; partial coherence ; phase slope index ; Signal and Image processing ; Time series analysis ; Transfer functions</subject><ispartof>IEEE signal processing letters, 2011-04, Vol.18 (4), p.251-254</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-af905ed5c17083fdc8ad083b8ec2053a1b5bfc3bd0733acc8e2c5491725d3d8e3</citedby><cites>FETCH-LOGICAL-c342t-af905ed5c17083fdc8ad083b8ec2053a1b5bfc3bd0733acc8e2c5491725d3d8e3</cites><orcidid>0000-0002-4050-2895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5705550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5705550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inserm.hal.science/inserm-00596701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chunfeng Yang</creatorcontrib><creatorcontrib>Le Bouquin Jeannes, Régine</creatorcontrib><creatorcontrib>Faucon, Gérard</creatorcontrib><creatorcontrib>Huazhong Shu</creatorcontrib><title>Extracting Information on Flow Direction in Multivariate Time Series</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Phase slope index is a measure which aims at detecting causal relation of interdependence in multivariate time series. One drawback of this approach relies in its incapability to distinguish the direct and indirect relations. So, in order to identify only direct relations, we propose to replace the ordinary coherence function used in the phase slope index with the partial coherence. Furthermore, we consider and compare two estimators of the coherence functions, the first one based on Fourier transform and the second one on an autoregressive model. In order to cope with the difficult issue of bidirectional flow, which cannot be addressed by the coherence based phase slope index, we propose another index based on the directed transfer function. Experimental results support the relevance of the new indices, both based on autoregressive modeling, in multivariate time series.</description><subject>Bioengineering</subject><subject>Coherence</subject><subject>Computer Science</subject><subject>Density functional theory</subject><subject>Directed transfer function</subject><subject>Engineering Sciences</subject><subject>Fourier transforms</subject><subject>Indexes</subject><subject>Life Sciences</subject><subject>Manganese</subject><subject>ordinary coherence</subject><subject>partial coherence</subject><subject>phase slope index</subject><subject>Signal and Image processing</subject><subject>Time series analysis</subject><subject>Transfer functions</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLAzEQhYMoWKvvgi_7A9w6kzTd7GPpxRZWFFqfQzY7q5G9SHat-u9NbSkMzJnhnPPwMXaLMEKE9CHbvIw4II54uBLkZ2yAUqqYiwmeBw0JxGkK6pJddd0HAChUcsDmi5_eG9u75i1aN2Xra9O7tonCLKv2O5o7T_b_45ro6avq3c54Z3qKtq6maEPeUXfNLkpTdXRz3EP2ulxsZ6s4e35cz6ZZbMWY97EpU5BUSIsJKFEWVpkiiFyR5SCFwVzmpRV5AYkQxlpF3MpxigmXhSgUiSG7P_S-m0p_elcb_6tb4_RqmmnXdORrDSDTSQK4w2CHg936tus8lacMgt5D0wGa3kPTR2ghcneIOCI62WUCUkoQf-KAaFI</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Chunfeng Yang</creator><creator>Le Bouquin Jeannes, Régine</creator><creator>Faucon, Gérard</creator><creator>Huazhong Shu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4050-2895</orcidid></search><sort><creationdate>20110401</creationdate><title>Extracting Information on Flow Direction in Multivariate Time Series</title><author>Chunfeng Yang ; Le Bouquin Jeannes, Régine ; Faucon, Gérard ; Huazhong Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-af905ed5c17083fdc8ad083b8ec2053a1b5bfc3bd0733acc8e2c5491725d3d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bioengineering</topic><topic>Coherence</topic><topic>Computer Science</topic><topic>Density functional theory</topic><topic>Directed transfer function</topic><topic>Engineering Sciences</topic><topic>Fourier transforms</topic><topic>Indexes</topic><topic>Life Sciences</topic><topic>Manganese</topic><topic>ordinary coherence</topic><topic>partial coherence</topic><topic>phase slope index</topic><topic>Signal and Image processing</topic><topic>Time series analysis</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chunfeng Yang</creatorcontrib><creatorcontrib>Le Bouquin Jeannes, Régine</creatorcontrib><creatorcontrib>Faucon, Gérard</creatorcontrib><creatorcontrib>Huazhong Shu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunfeng Yang</au><au>Le Bouquin Jeannes, Régine</au><au>Faucon, Gérard</au><au>Huazhong Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Information on Flow Direction in Multivariate Time Series</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>18</volume><issue>4</issue><spage>251</spage><epage>254</epage><pages>251-254</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Phase slope index is a measure which aims at detecting causal relation of interdependence in multivariate time series. One drawback of this approach relies in its incapability to distinguish the direct and indirect relations. So, in order to identify only direct relations, we propose to replace the ordinary coherence function used in the phase slope index with the partial coherence. Furthermore, we consider and compare two estimators of the coherence functions, the first one based on Fourier transform and the second one on an autoregressive model. In order to cope with the difficult issue of bidirectional flow, which cannot be addressed by the coherence based phase slope index, we propose another index based on the directed transfer function. Experimental results support the relevance of the new indices, both based on autoregressive modeling, in multivariate time series.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2011.2109712</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4050-2895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2011-04, Vol.18 (4), p.251-254
issn 1070-9908
1558-2361
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00596701v1
source IEEE Electronic Library (IEL)
subjects Bioengineering
Coherence
Computer Science
Density functional theory
Directed transfer function
Engineering Sciences
Fourier transforms
Indexes
Life Sciences
Manganese
ordinary coherence
partial coherence
phase slope index
Signal and Image processing
Time series analysis
Transfer functions
title Extracting Information on Flow Direction in Multivariate Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Information%20on%20Flow%20Direction%20in%20Multivariate%20Time%20Series&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Chunfeng%20Yang&rft.date=2011-04-01&rft.volume=18&rft.issue=4&rft.spage=251&rft.epage=254&rft.pages=251-254&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2011.2109712&rft_dat=%3Chal_RIE%3Eoai_HAL_inserm_00596701v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5705550&rfr_iscdi=true