Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia
Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive p...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | R1666 |
---|---|
container_issue | 6 |
container_start_page | R1659 |
container_title | American journal of physiology. Regulatory, integrative and comparative physiology |
container_volume | 298 |
creator | Favier, François B Costes, Frédéric Defour, Aurélia Bonnefoy, Régis Lefai, Etienne Baugé, Stéphane Peinnequin, André Benoit, Henri Freyssenet, Damien |
description | Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1. |
doi_str_mv | 10.1152/ajpregu.00550.2009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00593929v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733089199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</originalsourceid><addsrcrecordid>eNpdkc2O0zAUhS0EYkrhBVggiw0b0vFPfuplNR0YpEpICNbWjXMzdSeJg-3Q6bPwsji0zIKVr-3vnnvsQ8hbzlacF-IaDqPH-2nFWFGwlWBMPSOLdCEyniv2nCyYLGVWcq6uyKsQDoyxXObyJbkSTMhKMrYgv7fuOMwqHUTrBupaunmI1z30PXQWBhrB32Oczz2M0J-MHegIcX-EE01leMAOI3S0n4LpkNpAIQRnLERs6NHGfaKMRwhp--12u-UUH5PtEOZpSSCVoxsC0uio2Xs3WEP3p9E9WnhNXrTQBXxzWZfkx6fb7zd32e7r5y83m11mZFnGrFXIhTIcSyHauqykMSAaDkK1a86qXAmoi6ZuKqaQsbJZC0RhmiavkNd5s5ZL8vGsu4dOj9724E_agdV3m522yZvvdfpjJZVQv3jCP5zx0bufE4aoexsMdh0M6KagKynZWnGlEvn-P_LgJj-kt2hZFnnBi5TDkogzZLwLwWP7ZIEzPeesLznrvznrOefU9O6iPNU9Nk8t_4KVfwAuoqf2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365451502</pqid></control><display><type>article</type><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</creator><creatorcontrib>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</creatorcontrib><description>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</description><identifier>ISSN: 0363-6119</identifier><identifier>EISSN: 1522-1490</identifier><identifier>DOI: 10.1152/ajpregu.00550.2009</identifier><identifier>PMID: 20237300</identifier><identifier>CODEN: AJPRDO</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Anoxia ; Atrophy ; Atrophy - complications ; Atrophy - metabolism ; Atrophy - pathology ; Chronic obstructive pulmonary disease ; DNA damage ; Down-Regulation ; Human health and pathology ; Humans ; Hypoxia ; Hypoxia - complications ; Hypoxia - metabolism ; Hypoxia - pathology ; Life Sciences ; Male ; Mammals ; Mammals - metabolism ; Muscle, Skeletal ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Atrophy ; Muscular Atrophy - etiology ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Musculoskeletal system ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-akt - metabolism ; Pulmonary Disease, Chronic Obstructive ; Pulmonary Disease, Chronic Obstructive - complications ; Pulmonary Disease, Chronic Obstructive - metabolism ; Pulmonary Disease, Chronic Obstructive - pathology ; Rats ; Rats, Wistar ; Rodents ; Signal Transduction ; Sirolimus ; Sirolimus - metabolism ; Tissues and Organs</subject><ispartof>American journal of physiology. Regulatory, integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666</ispartof><rights>Copyright American Physiological Society Jun 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</citedby><cites>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</cites><orcidid>0000-0002-9084-4797 ; 0000-0002-3042-7801 ; 0000-0002-6130-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00593929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Favier, François B</creatorcontrib><creatorcontrib>Costes, Frédéric</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><creatorcontrib>Bonnefoy, Régis</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Baugé, Stéphane</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><title>American journal of physiology. Regulatory, integrative and comparative physiology</title><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><description>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</description><subject>Animals</subject><subject>Anoxia</subject><subject>Atrophy</subject><subject>Atrophy - complications</subject><subject>Atrophy - metabolism</subject><subject>Atrophy - pathology</subject><subject>Chronic obstructive pulmonary disease</subject><subject>DNA damage</subject><subject>Down-Regulation</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - complications</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Muscle, Skeletal</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Atrophy</subject><subject>Muscular Atrophy - etiology</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Pulmonary Disease, Chronic Obstructive</subject><subject>Pulmonary Disease, Chronic Obstructive - complications</subject><subject>Pulmonary Disease, Chronic Obstructive - metabolism</subject><subject>Pulmonary Disease, Chronic Obstructive - pathology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Sirolimus</subject><subject>Sirolimus - metabolism</subject><subject>Tissues and Organs</subject><issn>0363-6119</issn><issn>1522-1490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2O0zAUhS0EYkrhBVggiw0b0vFPfuplNR0YpEpICNbWjXMzdSeJg-3Q6bPwsji0zIKVr-3vnnvsQ8hbzlacF-IaDqPH-2nFWFGwlWBMPSOLdCEyniv2nCyYLGVWcq6uyKsQDoyxXObyJbkSTMhKMrYgv7fuOMwqHUTrBupaunmI1z30PXQWBhrB32Oczz2M0J-MHegIcX-EE01leMAOI3S0n4LpkNpAIQRnLERs6NHGfaKMRwhp--12u-UUH5PtEOZpSSCVoxsC0uio2Xs3WEP3p9E9WnhNXrTQBXxzWZfkx6fb7zd32e7r5y83m11mZFnGrFXIhTIcSyHauqykMSAaDkK1a86qXAmoi6ZuKqaQsbJZC0RhmiavkNd5s5ZL8vGsu4dOj9724E_agdV3m522yZvvdfpjJZVQv3jCP5zx0bufE4aoexsMdh0M6KagKynZWnGlEvn-P_LgJj-kt2hZFnnBi5TDkogzZLwLwWP7ZIEzPeesLznrvznrOefU9O6iPNU9Nk8t_4KVfwAuoqf2</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Favier, François B</creator><creator>Costes, Frédéric</creator><creator>Defour, Aurélia</creator><creator>Bonnefoy, Régis</creator><creator>Lefai, Etienne</creator><creator>Baugé, Stéphane</creator><creator>Peinnequin, André</creator><creator>Benoit, Henri</creator><creator>Freyssenet, Damien</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9084-4797</orcidid><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></search><sort><creationdate>20100601</creationdate><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><author>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anoxia</topic><topic>Atrophy</topic><topic>Atrophy - complications</topic><topic>Atrophy - metabolism</topic><topic>Atrophy - pathology</topic><topic>Chronic obstructive pulmonary disease</topic><topic>DNA damage</topic><topic>Down-Regulation</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - complications</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Muscle, Skeletal</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Atrophy</topic><topic>Muscular Atrophy - etiology</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Pulmonary Disease, Chronic Obstructive</topic><topic>Pulmonary Disease, Chronic Obstructive - complications</topic><topic>Pulmonary Disease, Chronic Obstructive - metabolism</topic><topic>Pulmonary Disease, Chronic Obstructive - pathology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Sirolimus</topic><topic>Sirolimus - metabolism</topic><topic>Tissues and Organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favier, François B</creatorcontrib><creatorcontrib>Costes, Frédéric</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><creatorcontrib>Bonnefoy, Régis</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Baugé, Stéphane</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favier, François B</au><au>Costes, Frédéric</au><au>Defour, Aurélia</au><au>Bonnefoy, Régis</au><au>Lefai, Etienne</au><au>Baugé, Stéphane</au><au>Peinnequin, André</au><au>Benoit, Henri</au><au>Freyssenet, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</atitle><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>298</volume><issue>6</issue><spage>R1659</spage><epage>R1666</epage><pages>R1659-R1666</pages><issn>0363-6119</issn><eissn>1522-1490</eissn><coden>AJPRDO</coden><abstract>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>20237300</pmid><doi>10.1152/ajpregu.00550.2009</doi><orcidid>https://orcid.org/0000-0002-9084-4797</orcidid><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6119 |
ispartof | American journal of physiology. Regulatory, integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666 |
issn | 0363-6119 1522-1490 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00593929v1 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Anoxia Atrophy Atrophy - complications Atrophy - metabolism Atrophy - pathology Chronic obstructive pulmonary disease DNA damage Down-Regulation Human health and pathology Humans Hypoxia Hypoxia - complications Hypoxia - metabolism Hypoxia - pathology Life Sciences Male Mammals Mammals - metabolism Muscle, Skeletal Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscular Atrophy Muscular Atrophy - etiology Muscular Atrophy - metabolism Muscular Atrophy - pathology Musculoskeletal system Proto-Oncogene Proteins c-akt Proto-Oncogene Proteins c-akt - metabolism Pulmonary Disease, Chronic Obstructive Pulmonary Disease, Chronic Obstructive - complications Pulmonary Disease, Chronic Obstructive - metabolism Pulmonary Disease, Chronic Obstructive - pathology Rats Rats, Wistar Rodents Signal Transduction Sirolimus Sirolimus - metabolism Tissues and Organs |
title | Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20Akt/mammalian%20target%20of%20rapamycin%20pathway%20in%20skeletal%20muscle%20is%20associated%20with%20increased%20REDD1%20expression%20in%20response%20to%20chronic%20hypoxia&rft.jtitle=American%20journal%20of%20physiology.%20Regulatory,%20integrative%20and%20comparative%20physiology&rft.au=Favier,%20Fran%C3%A7ois%20B&rft.date=2010-06-01&rft.volume=298&rft.issue=6&rft.spage=R1659&rft.epage=R1666&rft.pages=R1659-R1666&rft.issn=0363-6119&rft.eissn=1522-1490&rft.coden=AJPRDO&rft_id=info:doi/10.1152/ajpregu.00550.2009&rft_dat=%3Cproquest_hal_p%3E733089199%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365451502&rft_id=info:pmid/20237300&rfr_iscdi=true |