Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia

Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666
Hauptverfasser: Favier, François B, Costes, Frédéric, Defour, Aurélia, Bonnefoy, Régis, Lefai, Etienne, Baugé, Stéphane, Peinnequin, André, Benoit, Henri, Freyssenet, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R1666
container_issue 6
container_start_page R1659
container_title American journal of physiology. Regulatory, integrative and comparative physiology
container_volume 298
creator Favier, François B
Costes, Frédéric
Defour, Aurélia
Bonnefoy, Régis
Lefai, Etienne
Baugé, Stéphane
Peinnequin, André
Benoit, Henri
Freyssenet, Damien
description Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.
doi_str_mv 10.1152/ajpregu.00550.2009
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00593929v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733089199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</originalsourceid><addsrcrecordid>eNpdkc2O0zAUhS0EYkrhBVggiw0b0vFPfuplNR0YpEpICNbWjXMzdSeJg-3Q6bPwsji0zIKVr-3vnnvsQ8hbzlacF-IaDqPH-2nFWFGwlWBMPSOLdCEyniv2nCyYLGVWcq6uyKsQDoyxXObyJbkSTMhKMrYgv7fuOMwqHUTrBupaunmI1z30PXQWBhrB32Oczz2M0J-MHegIcX-EE01leMAOI3S0n4LpkNpAIQRnLERs6NHGfaKMRwhp--12u-UUH5PtEOZpSSCVoxsC0uio2Xs3WEP3p9E9WnhNXrTQBXxzWZfkx6fb7zd32e7r5y83m11mZFnGrFXIhTIcSyHauqykMSAaDkK1a86qXAmoi6ZuKqaQsbJZC0RhmiavkNd5s5ZL8vGsu4dOj9724E_agdV3m522yZvvdfpjJZVQv3jCP5zx0bufE4aoexsMdh0M6KagKynZWnGlEvn-P_LgJj-kt2hZFnnBi5TDkogzZLwLwWP7ZIEzPeesLznrvznrOefU9O6iPNU9Nk8t_4KVfwAuoqf2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365451502</pqid></control><display><type>article</type><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</creator><creatorcontrib>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</creatorcontrib><description>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</description><identifier>ISSN: 0363-6119</identifier><identifier>EISSN: 1522-1490</identifier><identifier>DOI: 10.1152/ajpregu.00550.2009</identifier><identifier>PMID: 20237300</identifier><identifier>CODEN: AJPRDO</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Anoxia ; Atrophy ; Atrophy - complications ; Atrophy - metabolism ; Atrophy - pathology ; Chronic obstructive pulmonary disease ; DNA damage ; Down-Regulation ; Human health and pathology ; Humans ; Hypoxia ; Hypoxia - complications ; Hypoxia - metabolism ; Hypoxia - pathology ; Life Sciences ; Male ; Mammals ; Mammals - metabolism ; Muscle, Skeletal ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Atrophy ; Muscular Atrophy - etiology ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Musculoskeletal system ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-akt - metabolism ; Pulmonary Disease, Chronic Obstructive ; Pulmonary Disease, Chronic Obstructive - complications ; Pulmonary Disease, Chronic Obstructive - metabolism ; Pulmonary Disease, Chronic Obstructive - pathology ; Rats ; Rats, Wistar ; Rodents ; Signal Transduction ; Sirolimus ; Sirolimus - metabolism ; Tissues and Organs</subject><ispartof>American journal of physiology. Regulatory, integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666</ispartof><rights>Copyright American Physiological Society Jun 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</citedby><cites>FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</cites><orcidid>0000-0002-9084-4797 ; 0000-0002-3042-7801 ; 0000-0002-6130-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00593929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Favier, François B</creatorcontrib><creatorcontrib>Costes, Frédéric</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><creatorcontrib>Bonnefoy, Régis</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Baugé, Stéphane</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><title>American journal of physiology. Regulatory, integrative and comparative physiology</title><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><description>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</description><subject>Animals</subject><subject>Anoxia</subject><subject>Atrophy</subject><subject>Atrophy - complications</subject><subject>Atrophy - metabolism</subject><subject>Atrophy - pathology</subject><subject>Chronic obstructive pulmonary disease</subject><subject>DNA damage</subject><subject>Down-Regulation</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - complications</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Muscle, Skeletal</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Atrophy</subject><subject>Muscular Atrophy - etiology</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Pulmonary Disease, Chronic Obstructive</subject><subject>Pulmonary Disease, Chronic Obstructive - complications</subject><subject>Pulmonary Disease, Chronic Obstructive - metabolism</subject><subject>Pulmonary Disease, Chronic Obstructive - pathology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Sirolimus</subject><subject>Sirolimus - metabolism</subject><subject>Tissues and Organs</subject><issn>0363-6119</issn><issn>1522-1490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2O0zAUhS0EYkrhBVggiw0b0vFPfuplNR0YpEpICNbWjXMzdSeJg-3Q6bPwsji0zIKVr-3vnnvsQ8hbzlacF-IaDqPH-2nFWFGwlWBMPSOLdCEyniv2nCyYLGVWcq6uyKsQDoyxXObyJbkSTMhKMrYgv7fuOMwqHUTrBupaunmI1z30PXQWBhrB32Oczz2M0J-MHegIcX-EE01leMAOI3S0n4LpkNpAIQRnLERs6NHGfaKMRwhp--12u-UUH5PtEOZpSSCVoxsC0uio2Xs3WEP3p9E9WnhNXrTQBXxzWZfkx6fb7zd32e7r5y83m11mZFnGrFXIhTIcSyHauqykMSAaDkK1a86qXAmoi6ZuKqaQsbJZC0RhmiavkNd5s5ZL8vGsu4dOj9724E_agdV3m522yZvvdfpjJZVQv3jCP5zx0bufE4aoexsMdh0M6KagKynZWnGlEvn-P_LgJj-kt2hZFnnBi5TDkogzZLwLwWP7ZIEzPeesLznrvznrOefU9O6iPNU9Nk8t_4KVfwAuoqf2</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Favier, François B</creator><creator>Costes, Frédéric</creator><creator>Defour, Aurélia</creator><creator>Bonnefoy, Régis</creator><creator>Lefai, Etienne</creator><creator>Baugé, Stéphane</creator><creator>Peinnequin, André</creator><creator>Benoit, Henri</creator><creator>Freyssenet, Damien</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9084-4797</orcidid><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></search><sort><creationdate>20100601</creationdate><title>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</title><author>Favier, François B ; Costes, Frédéric ; Defour, Aurélia ; Bonnefoy, Régis ; Lefai, Etienne ; Baugé, Stéphane ; Peinnequin, André ; Benoit, Henri ; Freyssenet, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f9e129c1e622fb673cca2d1a29f8107492ab5dbd709e006d82ee2cdd47e1b4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anoxia</topic><topic>Atrophy</topic><topic>Atrophy - complications</topic><topic>Atrophy - metabolism</topic><topic>Atrophy - pathology</topic><topic>Chronic obstructive pulmonary disease</topic><topic>DNA damage</topic><topic>Down-Regulation</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - complications</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Muscle, Skeletal</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Atrophy</topic><topic>Muscular Atrophy - etiology</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Pulmonary Disease, Chronic Obstructive</topic><topic>Pulmonary Disease, Chronic Obstructive - complications</topic><topic>Pulmonary Disease, Chronic Obstructive - metabolism</topic><topic>Pulmonary Disease, Chronic Obstructive - pathology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Sirolimus</topic><topic>Sirolimus - metabolism</topic><topic>Tissues and Organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favier, François B</creatorcontrib><creatorcontrib>Costes, Frédéric</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><creatorcontrib>Bonnefoy, Régis</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Baugé, Stéphane</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favier, François B</au><au>Costes, Frédéric</au><au>Defour, Aurélia</au><au>Bonnefoy, Régis</au><au>Lefai, Etienne</au><au>Baugé, Stéphane</au><au>Peinnequin, André</au><au>Benoit, Henri</au><au>Freyssenet, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia</atitle><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>298</volume><issue>6</issue><spage>R1659</spage><epage>R1666</epage><pages>R1659-R1666</pages><issn>0363-6119</issn><eissn>1522-1490</eissn><coden>AJPRDO</coden><abstract>Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>20237300</pmid><doi>10.1152/ajpregu.00550.2009</doi><orcidid>https://orcid.org/0000-0002-9084-4797</orcidid><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6119
ispartof American journal of physiology. Regulatory, integrative and comparative physiology, 2010-06, Vol.298 (6), p.R1659-R1666
issn 0363-6119
1522-1490
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00593929v1
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Anoxia
Atrophy
Atrophy - complications
Atrophy - metabolism
Atrophy - pathology
Chronic obstructive pulmonary disease
DNA damage
Down-Regulation
Human health and pathology
Humans
Hypoxia
Hypoxia - complications
Hypoxia - metabolism
Hypoxia - pathology
Life Sciences
Male
Mammals
Mammals - metabolism
Muscle, Skeletal
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscular Atrophy
Muscular Atrophy - etiology
Muscular Atrophy - metabolism
Muscular Atrophy - pathology
Musculoskeletal system
Proto-Oncogene Proteins c-akt
Proto-Oncogene Proteins c-akt - metabolism
Pulmonary Disease, Chronic Obstructive
Pulmonary Disease, Chronic Obstructive - complications
Pulmonary Disease, Chronic Obstructive - metabolism
Pulmonary Disease, Chronic Obstructive - pathology
Rats
Rats, Wistar
Rodents
Signal Transduction
Sirolimus
Sirolimus - metabolism
Tissues and Organs
title Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20Akt/mammalian%20target%20of%20rapamycin%20pathway%20in%20skeletal%20muscle%20is%20associated%20with%20increased%20REDD1%20expression%20in%20response%20to%20chronic%20hypoxia&rft.jtitle=American%20journal%20of%20physiology.%20Regulatory,%20integrative%20and%20comparative%20physiology&rft.au=Favier,%20Fran%C3%A7ois%20B&rft.date=2010-06-01&rft.volume=298&rft.issue=6&rft.spage=R1659&rft.epage=R1666&rft.pages=R1659-R1666&rft.issn=0363-6119&rft.eissn=1522-1490&rft.coden=AJPRDO&rft_id=info:doi/10.1152/ajpregu.00550.2009&rft_dat=%3Cproquest_hal_p%3E733089199%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365451502&rft_id=info:pmid/20237300&rfr_iscdi=true