The development of high quality seals for silicon patch-clamp chips

Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-10, Vol.31 (28), p.7398-7410
Hauptverfasser: Sordel, Thomas, Kermarrec, Frédérique, Sinquin, Yann, Fonteille, Isabelle, Labeau, Michel, Sauter-Starace, Fabien, Pudda, Catherine, de Crécy, François, Chatelain, François, De Waard, Michel, Arnoult, Christophe, Picollet-D’hahan, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7410
container_issue 28
container_start_page 7398
container_title Biomaterials
container_volume 31
creator Sordel, Thomas
Kermarrec, Frédérique
Sinquin, Yann
Fonteille, Isabelle
Labeau, Michel
Sauter-Starace, Fabien
Pudda, Catherine
de Crécy, François
Chatelain, François
De Waard, Michel
Arnoult, Christophe
Picollet-D’hahan, Nathalie
description Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.
doi_str_mv 10.1016/j.biomaterials.2010.06.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00498745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210007477</els_id><sourcerecordid>1671258456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</originalsourceid><addsrcrecordid>eNqNks-L1DAUx4so7rj6L0jxogc7vqRpknoQlvHHCgMeXM8hTV5txrbpJu3A_PemzLqIB1lyCCGf974hn5dlrwhsCRD-7rBtnB_0jMHpPm4ppAvgWyDVo2xDpJBFVUP1ONsAYbSoOaEX2bMYD5DOwOjT7IIChwqY2GS7mw5zi0fs_TTgOOe-zTv3s8tvF927-ZRHTBl560MeXe-MH_NJz6YrTK-HKTedm-Lz7EmbIHxxt19mPz5_utldF_tvX77urvaFqaSci9JiY6vSWGJrsFQyLJkQgkleEoum1S0rWVs3bVtSKxixXIIBW6bFZdmY8jJ7e-7b6V5NwQ06nJTXTl1f7ZUbI4ZBAbBaClYdScJfn_Ep-NsF46wGFw32vR7RL1EJKYDXjD2AZLKmjAmayDf_JQkXhFaSVTyh78-oCT7GgO39kwmo1aM6qL89qtWjAq6Sx1T88i5naQa096V_xCXg4xnA9OFHh0FF43A0aF1AMyvr3cNyPvzTxvRudEb3v_CE8eCXMK41REWqQH1fJ2odKAIAItkrfwPxQskI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671258456</pqid></control><display><type>article</type><title>The development of high quality seals for silicon patch-clamp chips</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</creator><creatorcontrib>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</creatorcontrib><description>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.06.015</identifier><identifier>PMID: 20605047</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Atomic force microscopy ; Bioengineering ; Biomaterials ; Channels ; Chips ; CHO Cells ; Cricetinae ; Cricetulus ; Dentistry ; Glass ; Humans ; Impedance ; Ion Channels ; Ion Channels - metabolism ; Life Sciences ; Materials Testing ; Microelectrodes ; Patch-Clamp Techniques ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods ; Planar patch-clamp ; Scanning electron microscopy ; Seals ; Silicon ; Silicon - chemistry ; Silicon chips ; Silicon substrates ; Surface energy ; Surface Properties ; X-ray photoelectron spectroscopy ; XPS</subject><ispartof>Biomaterials, 2010-10, Vol.31 (28), p.7398-7410</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</citedby><cites>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</cites><orcidid>0000-0002-3753-5901 ; 0000-0002-2782-9615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20605047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00498745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sordel, Thomas</creatorcontrib><creatorcontrib>Kermarrec, Frédérique</creatorcontrib><creatorcontrib>Sinquin, Yann</creatorcontrib><creatorcontrib>Fonteille, Isabelle</creatorcontrib><creatorcontrib>Labeau, Michel</creatorcontrib><creatorcontrib>Sauter-Starace, Fabien</creatorcontrib><creatorcontrib>Pudda, Catherine</creatorcontrib><creatorcontrib>de Crécy, François</creatorcontrib><creatorcontrib>Chatelain, François</creatorcontrib><creatorcontrib>De Waard, Michel</creatorcontrib><creatorcontrib>Arnoult, Christophe</creatorcontrib><creatorcontrib>Picollet-D’hahan, Nathalie</creatorcontrib><title>The development of high quality seals for silicon patch-clamp chips</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Channels</subject><subject>Chips</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Dentistry</subject><subject>Glass</subject><subject>Humans</subject><subject>Impedance</subject><subject>Ion Channels</subject><subject>Ion Channels - metabolism</subject><subject>Life Sciences</subject><subject>Materials Testing</subject><subject>Microelectrodes</subject><subject>Patch-Clamp Techniques</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Planar patch-clamp</subject><subject>Scanning electron microscopy</subject><subject>Seals</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon chips</subject><subject>Silicon substrates</subject><subject>Surface energy</subject><subject>Surface Properties</subject><subject>X-ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-L1DAUx4so7rj6L0jxogc7vqRpknoQlvHHCgMeXM8hTV5txrbpJu3A_PemzLqIB1lyCCGf974hn5dlrwhsCRD-7rBtnB_0jMHpPm4ppAvgWyDVo2xDpJBFVUP1ONsAYbSoOaEX2bMYD5DOwOjT7IIChwqY2GS7mw5zi0fs_TTgOOe-zTv3s8tvF927-ZRHTBl560MeXe-MH_NJz6YrTK-HKTedm-Lz7EmbIHxxt19mPz5_utldF_tvX77urvaFqaSci9JiY6vSWGJrsFQyLJkQgkleEoum1S0rWVs3bVtSKxixXIIBW6bFZdmY8jJ7e-7b6V5NwQ06nJTXTl1f7ZUbI4ZBAbBaClYdScJfn_Ep-NsF46wGFw32vR7RL1EJKYDXjD2AZLKmjAmayDf_JQkXhFaSVTyh78-oCT7GgO39kwmo1aM6qL89qtWjAq6Sx1T88i5naQa096V_xCXg4xnA9OFHh0FF43A0aF1AMyvr3cNyPvzTxvRudEb3v_CE8eCXMK41REWqQH1fJ2odKAIAItkrfwPxQskI</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Sordel, Thomas</creator><creator>Kermarrec, Frédérique</creator><creator>Sinquin, Yann</creator><creator>Fonteille, Isabelle</creator><creator>Labeau, Michel</creator><creator>Sauter-Starace, Fabien</creator><creator>Pudda, Catherine</creator><creator>de Crécy, François</creator><creator>Chatelain, François</creator><creator>De Waard, Michel</creator><creator>Arnoult, Christophe</creator><creator>Picollet-D’hahan, Nathalie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3753-5901</orcidid><orcidid>https://orcid.org/0000-0002-2782-9615</orcidid></search><sort><creationdate>20101001</creationdate><title>The development of high quality seals for silicon patch-clamp chips</title><author>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Channels</topic><topic>Chips</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Dentistry</topic><topic>Glass</topic><topic>Humans</topic><topic>Impedance</topic><topic>Ion Channels</topic><topic>Ion Channels - metabolism</topic><topic>Life Sciences</topic><topic>Materials Testing</topic><topic>Microelectrodes</topic><topic>Patch-Clamp Techniques</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Planar patch-clamp</topic><topic>Scanning electron microscopy</topic><topic>Seals</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon chips</topic><topic>Silicon substrates</topic><topic>Surface energy</topic><topic>Surface Properties</topic><topic>X-ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sordel, Thomas</creatorcontrib><creatorcontrib>Kermarrec, Frédérique</creatorcontrib><creatorcontrib>Sinquin, Yann</creatorcontrib><creatorcontrib>Fonteille, Isabelle</creatorcontrib><creatorcontrib>Labeau, Michel</creatorcontrib><creatorcontrib>Sauter-Starace, Fabien</creatorcontrib><creatorcontrib>Pudda, Catherine</creatorcontrib><creatorcontrib>de Crécy, François</creatorcontrib><creatorcontrib>Chatelain, François</creatorcontrib><creatorcontrib>De Waard, Michel</creatorcontrib><creatorcontrib>Arnoult, Christophe</creatorcontrib><creatorcontrib>Picollet-D’hahan, Nathalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sordel, Thomas</au><au>Kermarrec, Frédérique</au><au>Sinquin, Yann</au><au>Fonteille, Isabelle</au><au>Labeau, Michel</au><au>Sauter-Starace, Fabien</au><au>Pudda, Catherine</au><au>de Crécy, François</au><au>Chatelain, François</au><au>De Waard, Michel</au><au>Arnoult, Christophe</au><au>Picollet-D’hahan, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The development of high quality seals for silicon patch-clamp chips</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>31</volume><issue>28</issue><spage>7398</spage><epage>7410</epage><pages>7398-7410</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20605047</pmid><doi>10.1016/j.biomaterials.2010.06.015</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3753-5901</orcidid><orcidid>https://orcid.org/0000-0002-2782-9615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2010-10, Vol.31 (28), p.7398-7410
issn 0142-9612
1878-5905
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00498745v1
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Animals
Atomic force microscopy
Bioengineering
Biomaterials
Channels
Chips
CHO Cells
Cricetinae
Cricetulus
Dentistry
Glass
Humans
Impedance
Ion Channels
Ion Channels - metabolism
Life Sciences
Materials Testing
Microelectrodes
Patch-Clamp Techniques
Patch-Clamp Techniques - instrumentation
Patch-Clamp Techniques - methods
Planar patch-clamp
Scanning electron microscopy
Seals
Silicon
Silicon - chemistry
Silicon chips
Silicon substrates
Surface energy
Surface Properties
X-ray photoelectron spectroscopy
XPS
title The development of high quality seals for silicon patch-clamp chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20development%20of%20high%20quality%20seals%20for%20silicon%20patch-clamp%20chips&rft.jtitle=Biomaterials&rft.au=Sordel,%20Thomas&rft.date=2010-10-01&rft.volume=31&rft.issue=28&rft.spage=7398&rft.epage=7410&rft.pages=7398-7410&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.06.015&rft_dat=%3Cproquest_hal_p%3E1671258456%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671258456&rft_id=info:pmid/20605047&rft_els_id=S0142961210007477&rfr_iscdi=true