The development of high quality seals for silicon patch-clamp chips
Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2010-10, Vol.31 (28), p.7398-7410 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7410 |
---|---|
container_issue | 28 |
container_start_page | 7398 |
container_title | Biomaterials |
container_volume | 31 |
creator | Sordel, Thomas Kermarrec, Frédérique Sinquin, Yann Fonteille, Isabelle Labeau, Michel Sauter-Starace, Fabien Pudda, Catherine de Crécy, François Chatelain, François De Waard, Michel Arnoult, Christophe Picollet-D’hahan, Nathalie |
description | Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips. |
doi_str_mv | 10.1016/j.biomaterials.2010.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00498745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210007477</els_id><sourcerecordid>1671258456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</originalsourceid><addsrcrecordid>eNqNks-L1DAUx4so7rj6L0jxogc7vqRpknoQlvHHCgMeXM8hTV5txrbpJu3A_PemzLqIB1lyCCGf974hn5dlrwhsCRD-7rBtnB_0jMHpPm4ppAvgWyDVo2xDpJBFVUP1ONsAYbSoOaEX2bMYD5DOwOjT7IIChwqY2GS7mw5zi0fs_TTgOOe-zTv3s8tvF927-ZRHTBl560MeXe-MH_NJz6YrTK-HKTedm-Lz7EmbIHxxt19mPz5_utldF_tvX77urvaFqaSci9JiY6vSWGJrsFQyLJkQgkleEoum1S0rWVs3bVtSKxixXIIBW6bFZdmY8jJ7e-7b6V5NwQ06nJTXTl1f7ZUbI4ZBAbBaClYdScJfn_Ep-NsF46wGFw32vR7RL1EJKYDXjD2AZLKmjAmayDf_JQkXhFaSVTyh78-oCT7GgO39kwmo1aM6qL89qtWjAq6Sx1T88i5naQa096V_xCXg4xnA9OFHh0FF43A0aF1AMyvr3cNyPvzTxvRudEb3v_CE8eCXMK41REWqQH1fJ2odKAIAItkrfwPxQskI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671258456</pqid></control><display><type>article</type><title>The development of high quality seals for silicon patch-clamp chips</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</creator><creatorcontrib>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</creatorcontrib><description>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.06.015</identifier><identifier>PMID: 20605047</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Atomic force microscopy ; Bioengineering ; Biomaterials ; Channels ; Chips ; CHO Cells ; Cricetinae ; Cricetulus ; Dentistry ; Glass ; Humans ; Impedance ; Ion Channels ; Ion Channels - metabolism ; Life Sciences ; Materials Testing ; Microelectrodes ; Patch-Clamp Techniques ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods ; Planar patch-clamp ; Scanning electron microscopy ; Seals ; Silicon ; Silicon - chemistry ; Silicon chips ; Silicon substrates ; Surface energy ; Surface Properties ; X-ray photoelectron spectroscopy ; XPS</subject><ispartof>Biomaterials, 2010-10, Vol.31 (28), p.7398-7410</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</citedby><cites>FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</cites><orcidid>0000-0002-3753-5901 ; 0000-0002-2782-9615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20605047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00498745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sordel, Thomas</creatorcontrib><creatorcontrib>Kermarrec, Frédérique</creatorcontrib><creatorcontrib>Sinquin, Yann</creatorcontrib><creatorcontrib>Fonteille, Isabelle</creatorcontrib><creatorcontrib>Labeau, Michel</creatorcontrib><creatorcontrib>Sauter-Starace, Fabien</creatorcontrib><creatorcontrib>Pudda, Catherine</creatorcontrib><creatorcontrib>de Crécy, François</creatorcontrib><creatorcontrib>Chatelain, François</creatorcontrib><creatorcontrib>De Waard, Michel</creatorcontrib><creatorcontrib>Arnoult, Christophe</creatorcontrib><creatorcontrib>Picollet-D’hahan, Nathalie</creatorcontrib><title>The development of high quality seals for silicon patch-clamp chips</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Channels</subject><subject>Chips</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Dentistry</subject><subject>Glass</subject><subject>Humans</subject><subject>Impedance</subject><subject>Ion Channels</subject><subject>Ion Channels - metabolism</subject><subject>Life Sciences</subject><subject>Materials Testing</subject><subject>Microelectrodes</subject><subject>Patch-Clamp Techniques</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Planar patch-clamp</subject><subject>Scanning electron microscopy</subject><subject>Seals</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon chips</subject><subject>Silicon substrates</subject><subject>Surface energy</subject><subject>Surface Properties</subject><subject>X-ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-L1DAUx4so7rj6L0jxogc7vqRpknoQlvHHCgMeXM8hTV5txrbpJu3A_PemzLqIB1lyCCGf974hn5dlrwhsCRD-7rBtnB_0jMHpPm4ppAvgWyDVo2xDpJBFVUP1ONsAYbSoOaEX2bMYD5DOwOjT7IIChwqY2GS7mw5zi0fs_TTgOOe-zTv3s8tvF927-ZRHTBl560MeXe-MH_NJz6YrTK-HKTedm-Lz7EmbIHxxt19mPz5_utldF_tvX77urvaFqaSci9JiY6vSWGJrsFQyLJkQgkleEoum1S0rWVs3bVtSKxixXIIBW6bFZdmY8jJ7e-7b6V5NwQ06nJTXTl1f7ZUbI4ZBAbBaClYdScJfn_Ep-NsF46wGFw32vR7RL1EJKYDXjD2AZLKmjAmayDf_JQkXhFaSVTyh78-oCT7GgO39kwmo1aM6qL89qtWjAq6Sx1T88i5naQa096V_xCXg4xnA9OFHh0FF43A0aF1AMyvr3cNyPvzTxvRudEb3v_CE8eCXMK41REWqQH1fJ2odKAIAItkrfwPxQskI</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Sordel, Thomas</creator><creator>Kermarrec, Frédérique</creator><creator>Sinquin, Yann</creator><creator>Fonteille, Isabelle</creator><creator>Labeau, Michel</creator><creator>Sauter-Starace, Fabien</creator><creator>Pudda, Catherine</creator><creator>de Crécy, François</creator><creator>Chatelain, François</creator><creator>De Waard, Michel</creator><creator>Arnoult, Christophe</creator><creator>Picollet-D’hahan, Nathalie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3753-5901</orcidid><orcidid>https://orcid.org/0000-0002-2782-9615</orcidid></search><sort><creationdate>20101001</creationdate><title>The development of high quality seals for silicon patch-clamp chips</title><author>Sordel, Thomas ; Kermarrec, Frédérique ; Sinquin, Yann ; Fonteille, Isabelle ; Labeau, Michel ; Sauter-Starace, Fabien ; Pudda, Catherine ; de Crécy, François ; Chatelain, François ; De Waard, Michel ; Arnoult, Christophe ; Picollet-D’hahan, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-3debd53cd1d90d284e3477748631decfaf434f9bff32d741d680c0d3d3d683bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Channels</topic><topic>Chips</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Dentistry</topic><topic>Glass</topic><topic>Humans</topic><topic>Impedance</topic><topic>Ion Channels</topic><topic>Ion Channels - metabolism</topic><topic>Life Sciences</topic><topic>Materials Testing</topic><topic>Microelectrodes</topic><topic>Patch-Clamp Techniques</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Planar patch-clamp</topic><topic>Scanning electron microscopy</topic><topic>Seals</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon chips</topic><topic>Silicon substrates</topic><topic>Surface energy</topic><topic>Surface Properties</topic><topic>X-ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sordel, Thomas</creatorcontrib><creatorcontrib>Kermarrec, Frédérique</creatorcontrib><creatorcontrib>Sinquin, Yann</creatorcontrib><creatorcontrib>Fonteille, Isabelle</creatorcontrib><creatorcontrib>Labeau, Michel</creatorcontrib><creatorcontrib>Sauter-Starace, Fabien</creatorcontrib><creatorcontrib>Pudda, Catherine</creatorcontrib><creatorcontrib>de Crécy, François</creatorcontrib><creatorcontrib>Chatelain, François</creatorcontrib><creatorcontrib>De Waard, Michel</creatorcontrib><creatorcontrib>Arnoult, Christophe</creatorcontrib><creatorcontrib>Picollet-D’hahan, Nathalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sordel, Thomas</au><au>Kermarrec, Frédérique</au><au>Sinquin, Yann</au><au>Fonteille, Isabelle</au><au>Labeau, Michel</au><au>Sauter-Starace, Fabien</au><au>Pudda, Catherine</au><au>de Crécy, François</au><au>Chatelain, François</au><au>De Waard, Michel</au><au>Arnoult, Christophe</au><au>Picollet-D’hahan, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The development of high quality seals for silicon patch-clamp chips</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>31</volume><issue>28</issue><spage>7398</spage><epage>7410</epage><pages>7398-7410</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNav 1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20605047</pmid><doi>10.1016/j.biomaterials.2010.06.015</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3753-5901</orcidid><orcidid>https://orcid.org/0000-0002-2782-9615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2010-10, Vol.31 (28), p.7398-7410 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00498745v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Advanced Basic Science Animals Atomic force microscopy Bioengineering Biomaterials Channels Chips CHO Cells Cricetinae Cricetulus Dentistry Glass Humans Impedance Ion Channels Ion Channels - metabolism Life Sciences Materials Testing Microelectrodes Patch-Clamp Techniques Patch-Clamp Techniques - instrumentation Patch-Clamp Techniques - methods Planar patch-clamp Scanning electron microscopy Seals Silicon Silicon - chemistry Silicon chips Silicon substrates Surface energy Surface Properties X-ray photoelectron spectroscopy XPS |
title | The development of high quality seals for silicon patch-clamp chips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20development%20of%20high%20quality%20seals%20for%20silicon%20patch-clamp%20chips&rft.jtitle=Biomaterials&rft.au=Sordel,%20Thomas&rft.date=2010-10-01&rft.volume=31&rft.issue=28&rft.spage=7398&rft.epage=7410&rft.pages=7398-7410&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.06.015&rft_dat=%3Cproquest_hal_p%3E1671258456%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671258456&rft_id=info:pmid/20605047&rft_els_id=S0142961210007477&rfr_iscdi=true |