The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering

Abstract In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2009-03, Vol.30 (8), p.1568-1577
Hauptverfasser: Laïb, Samia, Fellah, Borhane H, Fatimi, Ahmed, Quillard, Sophie, Vinatier, Claire, Gauthier, Olivier, Janvier, Pascal, Petit, Marc, Bujoli, Bruno, Bohic, Sylvain, Weiss, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1577
container_issue 8
container_start_page 1568
container_title Biomaterials
container_volume 30
creator Laïb, Samia
Fellah, Borhane H
Fatimi, Ahmed
Quillard, Sophie
Vinatier, Claire
Gauthier, Olivier
Janvier, Pascal
Petit, Marc
Bujoli, Bruno
Bohic, Sylvain
Weiss, Pierre
description Abstract In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium complex and implanted into rabbit bone defects in order to investigate its in vivo degradation. 1, 2, 3 and 8 weeks after surgery, the bone explants were analyzed by synchrotron X-ray microfluorescence, infrared mapping spectroscopy, scanning electron microscopy, and optical microscopy after histological coloration. The results showed that the labelled polysaccharide-based hydrogel was likely to undergo phagocytosis that seemed to occur from the edge to the center of the implantation site up to at least the 8th week.
doi_str_mv 10.1016/j.biomaterials.2008.11.031
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00352650v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296120800923X</els_id><sourcerecordid>32991290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-abde0be624bfef50e84cb4accb84c1284c0be12ee44ee0f6c80dbdf54d1ab0513</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYsvCX0AWB06bMHbsbMIBabV8LFIlDiwSN8sfk9YlsYudVOq_x1ErQFyWiz-feWfsd4riFYWKAm3e7CrtwqgmjE4NqWIAbUVpBTV9VKxoe92WogPxuFgB5azsGsouimcp7SDvgbOnxQXtshDUsCrc_RaJ8-TgDoFY3ERl1eSCJ6EnisR52qJ380gGpXEY0JJ9GI5JGbNV0VkstUr5cHu0MWxwIH2IRAePZHIpzUjQb5zHXKjfPC-e9LlcfHGeL4tvHz_c396V6y-fPt_erEsjWj6VSlsEjQ3jusdeALbcaJ4T6rygLA_5ljJEzhGhb0wLVttecEuVBkHry-LqpLtVg9xHN6p4lEE5eXezls4njKMEqAVrBBwW_PUJ38fwc8Y0ydElk9-qPIY5yaZpuWCCPQjWrOso6-BBkEGWE_w6g29PoIkhpYj973IpyMVpuZN_Oy0XpyWlMjudg1-es8x6RPsn9GxtBt6fAMyffXAYZTIOvUHrIppJ2uD-L8-7f2TM4LwzaviBR0y7MEe_xFCZmAT5dem5peWgBehY_b3-BUmC1-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20252547</pqid></control><display><type>article</type><title>The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Laïb, Samia ; Fellah, Borhane H ; Fatimi, Ahmed ; Quillard, Sophie ; Vinatier, Claire ; Gauthier, Olivier ; Janvier, Pascal ; Petit, Marc ; Bujoli, Bruno ; Bohic, Sylvain ; Weiss, Pierre</creator><creatorcontrib>Laïb, Samia ; Fellah, Borhane H ; Fatimi, Ahmed ; Quillard, Sophie ; Vinatier, Claire ; Gauthier, Olivier ; Janvier, Pascal ; Petit, Marc ; Bujoli, Bruno ; Bohic, Sylvain ; Weiss, Pierre</creatorcontrib><description>Abstract In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium complex and implanted into rabbit bone defects in order to investigate its in vivo degradation. 1, 2, 3 and 8 weeks after surgery, the bone explants were analyzed by synchrotron X-ray microfluorescence, infrared mapping spectroscopy, scanning electron microscopy, and optical microscopy after histological coloration. The results showed that the labelled polysaccharide-based hydrogel was likely to undergo phagocytosis that seemed to occur from the edge to the center of the implantation site up to at least the 8th week.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2008.11.031</identifier><identifier>PMID: 19101030</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Absorbable Implants ; Advanced Basic Science ; Animals ; Biocompatible Materials - metabolism ; Bioengineering ; Biomaterials ; Bone and Bones - drug effects ; Bone and Bones - metabolism ; Bone healing ; Calcium Phosphates - metabolism ; Cell Line ; Cell Survival - drug effects ; Cells, Cultured ; Ceramics - metabolism ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Cross-Linking Reagents - pharmacology ; Degradation ; Dentistry ; Femur - pathology ; Femur - ultrastructure ; Fluorescence ; Humans ; Hydrogel ; Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism ; Hypromellose Derivatives ; In vivo test ; Life Sciences ; Methylcellulose - analogs &amp; derivatives ; Methylcellulose - chemistry ; Methylcellulose - metabolism ; N-Acetylneuraminic Acid - chemistry ; N-Acetylneuraminic Acid - metabolism ; Osteogenesis - drug effects ; Prosthesis Implantation ; Rabbits ; Ruthenium - metabolism ; Siloxane ; Time Factors ; Tissue Engineering</subject><ispartof>Biomaterials, 2009-03, Vol.30 (8), p.1568-1577</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-abde0be624bfef50e84cb4accb84c1284c0be12ee44ee0f6c80dbdf54d1ab0513</citedby><cites>FETCH-LOGICAL-c584t-abde0be624bfef50e84cb4accb84c1284c0be12ee44ee0f6c80dbdf54d1ab0513</cites><orcidid>0000-0002-7473-4993 ; 0000-0001-6355-7592 ; 0000-0002-2256-0792 ; 0000-0002-6159-8590 ; 0000-0001-6298-2087 ; 0000-0002-6063-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296120800923X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19101030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00352650$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laïb, Samia</creatorcontrib><creatorcontrib>Fellah, Borhane H</creatorcontrib><creatorcontrib>Fatimi, Ahmed</creatorcontrib><creatorcontrib>Quillard, Sophie</creatorcontrib><creatorcontrib>Vinatier, Claire</creatorcontrib><creatorcontrib>Gauthier, Olivier</creatorcontrib><creatorcontrib>Janvier, Pascal</creatorcontrib><creatorcontrib>Petit, Marc</creatorcontrib><creatorcontrib>Bujoli, Bruno</creatorcontrib><creatorcontrib>Bohic, Sylvain</creatorcontrib><creatorcontrib>Weiss, Pierre</creatorcontrib><title>The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium complex and implanted into rabbit bone defects in order to investigate its in vivo degradation. 1, 2, 3 and 8 weeks after surgery, the bone explants were analyzed by synchrotron X-ray microfluorescence, infrared mapping spectroscopy, scanning electron microscopy, and optical microscopy after histological coloration. The results showed that the labelled polysaccharide-based hydrogel was likely to undergo phagocytosis that seemed to occur from the edge to the center of the implantation site up to at least the 8th week.</description><subject>Absorbable Implants</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - metabolism</subject><subject>Bone healing</subject><subject>Calcium Phosphates - metabolism</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Ceramics - metabolism</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Degradation</subject><subject>Dentistry</subject><subject>Femur - pathology</subject><subject>Femur - ultrastructure</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Hydrogel</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism</subject><subject>Hypromellose Derivatives</subject><subject>In vivo test</subject><subject>Life Sciences</subject><subject>Methylcellulose - analogs &amp; derivatives</subject><subject>Methylcellulose - chemistry</subject><subject>Methylcellulose - metabolism</subject><subject>N-Acetylneuraminic Acid - chemistry</subject><subject>N-Acetylneuraminic Acid - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Prosthesis Implantation</subject><subject>Rabbits</subject><subject>Ruthenium - metabolism</subject><subject>Siloxane</subject><subject>Time Factors</subject><subject>Tissue Engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2P0zAQhiMEYsvCX0AWB06bMHbsbMIBabV8LFIlDiwSN8sfk9YlsYudVOq_x1ErQFyWiz-feWfsd4riFYWKAm3e7CrtwqgmjE4NqWIAbUVpBTV9VKxoe92WogPxuFgB5azsGsouimcp7SDvgbOnxQXtshDUsCrc_RaJ8-TgDoFY3ERl1eSCJ6EnisR52qJ380gGpXEY0JJ9GI5JGbNV0VkstUr5cHu0MWxwIH2IRAePZHIpzUjQb5zHXKjfPC-e9LlcfHGeL4tvHz_c396V6y-fPt_erEsjWj6VSlsEjQ3jusdeALbcaJ4T6rygLA_5ljJEzhGhb0wLVttecEuVBkHry-LqpLtVg9xHN6p4lEE5eXezls4njKMEqAVrBBwW_PUJ38fwc8Y0ydElk9-qPIY5yaZpuWCCPQjWrOso6-BBkEGWE_w6g29PoIkhpYj973IpyMVpuZN_Oy0XpyWlMjudg1-es8x6RPsn9GxtBt6fAMyffXAYZTIOvUHrIppJ2uD-L8-7f2TM4LwzaviBR0y7MEe_xFCZmAT5dem5peWgBehY_b3-BUmC1-g</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Laïb, Samia</creator><creator>Fellah, Borhane H</creator><creator>Fatimi, Ahmed</creator><creator>Quillard, Sophie</creator><creator>Vinatier, Claire</creator><creator>Gauthier, Olivier</creator><creator>Janvier, Pascal</creator><creator>Petit, Marc</creator><creator>Bujoli, Bruno</creator><creator>Bohic, Sylvain</creator><creator>Weiss, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7473-4993</orcidid><orcidid>https://orcid.org/0000-0001-6355-7592</orcidid><orcidid>https://orcid.org/0000-0002-2256-0792</orcidid><orcidid>https://orcid.org/0000-0002-6159-8590</orcidid><orcidid>https://orcid.org/0000-0001-6298-2087</orcidid><orcidid>https://orcid.org/0000-0002-6063-9901</orcidid></search><sort><creationdate>20090301</creationdate><title>The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering</title><author>Laïb, Samia ; Fellah, Borhane H ; Fatimi, Ahmed ; Quillard, Sophie ; Vinatier, Claire ; Gauthier, Olivier ; Janvier, Pascal ; Petit, Marc ; Bujoli, Bruno ; Bohic, Sylvain ; Weiss, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-abde0be624bfef50e84cb4accb84c1284c0be12ee44ee0f6c80dbdf54d1ab0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Absorbable Implants</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - metabolism</topic><topic>Bone healing</topic><topic>Calcium Phosphates - metabolism</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Ceramics - metabolism</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Degradation</topic><topic>Dentistry</topic><topic>Femur - pathology</topic><topic>Femur - ultrastructure</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Hydrogel</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism</topic><topic>Hypromellose Derivatives</topic><topic>In vivo test</topic><topic>Life Sciences</topic><topic>Methylcellulose - analogs &amp; derivatives</topic><topic>Methylcellulose - chemistry</topic><topic>Methylcellulose - metabolism</topic><topic>N-Acetylneuraminic Acid - chemistry</topic><topic>N-Acetylneuraminic Acid - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Prosthesis Implantation</topic><topic>Rabbits</topic><topic>Ruthenium - metabolism</topic><topic>Siloxane</topic><topic>Time Factors</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laïb, Samia</creatorcontrib><creatorcontrib>Fellah, Borhane H</creatorcontrib><creatorcontrib>Fatimi, Ahmed</creatorcontrib><creatorcontrib>Quillard, Sophie</creatorcontrib><creatorcontrib>Vinatier, Claire</creatorcontrib><creatorcontrib>Gauthier, Olivier</creatorcontrib><creatorcontrib>Janvier, Pascal</creatorcontrib><creatorcontrib>Petit, Marc</creatorcontrib><creatorcontrib>Bujoli, Bruno</creatorcontrib><creatorcontrib>Bohic, Sylvain</creatorcontrib><creatorcontrib>Weiss, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laïb, Samia</au><au>Fellah, Borhane H</au><au>Fatimi, Ahmed</au><au>Quillard, Sophie</au><au>Vinatier, Claire</au><au>Gauthier, Olivier</au><au>Janvier, Pascal</au><au>Petit, Marc</au><au>Bujoli, Bruno</au><au>Bohic, Sylvain</au><au>Weiss, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>30</volume><issue>8</issue><spage>1568</spage><epage>1577</epage><pages>1568-1577</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium complex and implanted into rabbit bone defects in order to investigate its in vivo degradation. 1, 2, 3 and 8 weeks after surgery, the bone explants were analyzed by synchrotron X-ray microfluorescence, infrared mapping spectroscopy, scanning electron microscopy, and optical microscopy after histological coloration. The results showed that the labelled polysaccharide-based hydrogel was likely to undergo phagocytosis that seemed to occur from the edge to the center of the implantation site up to at least the 8th week.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>19101030</pmid><doi>10.1016/j.biomaterials.2008.11.031</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7473-4993</orcidid><orcidid>https://orcid.org/0000-0001-6355-7592</orcidid><orcidid>https://orcid.org/0000-0002-2256-0792</orcidid><orcidid>https://orcid.org/0000-0002-6159-8590</orcidid><orcidid>https://orcid.org/0000-0001-6298-2087</orcidid><orcidid>https://orcid.org/0000-0002-6063-9901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2009-03, Vol.30 (8), p.1568-1577
issn 0142-9612
1878-5905
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00352650v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Absorbable Implants
Advanced Basic Science
Animals
Biocompatible Materials - metabolism
Bioengineering
Biomaterials
Bone and Bones - drug effects
Bone and Bones - metabolism
Bone healing
Calcium Phosphates - metabolism
Cell Line
Cell Survival - drug effects
Cells, Cultured
Ceramics - metabolism
Chondrocytes - cytology
Chondrocytes - drug effects
Cross-Linking Reagents - pharmacology
Degradation
Dentistry
Femur - pathology
Femur - ultrastructure
Fluorescence
Humans
Hydrogel
Hydrogel, Polyethylene Glycol Dimethacrylate - metabolism
Hypromellose Derivatives
In vivo test
Life Sciences
Methylcellulose - analogs & derivatives
Methylcellulose - chemistry
Methylcellulose - metabolism
N-Acetylneuraminic Acid - chemistry
N-Acetylneuraminic Acid - metabolism
Osteogenesis - drug effects
Prosthesis Implantation
Rabbits
Ruthenium - metabolism
Siloxane
Time Factors
Tissue Engineering
title The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vivo%20degradation%20of%20a%20ruthenium%20labelled%20polysaccharide-based%20hydrogel%20for%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=La%C3%AFb,%20Samia&rft.date=2009-03-01&rft.volume=30&rft.issue=8&rft.spage=1568&rft.epage=1577&rft.pages=1568-1577&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2008.11.031&rft_dat=%3Cproquest_hal_p%3E32991290%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20252547&rft_id=info:pmid/19101030&rft_els_id=1_s2_0_S014296120800923X&rfr_iscdi=true