Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3
In LQT3 patients, SCN5A mutations induce ultraslow inactivation of a small fraction of the hNav1.5 current, i.e. persistent Na + current ( I pNa). We explored the time course of effects of such a change on the intracellular ionic homeostasis in a model of guinea-pig cardiac ventricular cell [Pasek,...
Gespeichert in:
Veröffentlicht in: | Progress in biophysics and molecular biology 2008-01, Vol.96 (1), p.281-293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 1 |
container_start_page | 281 |
container_title | Progress in biophysics and molecular biology |
container_volume | 96 |
creator | Christé, G. Chahine, M. Chevalier, P. Pásek, M. |
description | In LQT3 patients, SCN5A mutations induce ultraslow inactivation of a small fraction of the hNav1.5 current, i.e. persistent Na
+ current (
I
pNa). We explored the time course of effects of such a change on the intracellular ionic homeostasis in a model of guinea-pig cardiac ventricular cell [Pasek, M., Simurda, J., Orchard, C.H., Christé, G., 2007b. A model of the guinea-pig ventricular cardiomyocyte incorporating a transverse–axial tubular system. Prog. Biophys. Mol. Biol., this issue]. Sudden addition of
I
pNa prevented action potential (AP) repolarization when its conductance (
g
pNa) exceeded 0.12% of the maximal conductance of fast
I
Na (
g
Na). With
g
pNa at 0.1%
g
Na, the AP duration at 90% repolarization (APD
90) was initially lengthened to 2.6-fold that in control. Under regular stimulation at 1
Hz it shortened progressively to 1.37-fold control APD
90, and intracellular [Na
+]
i increased by 6% with a time constant of 106
s. Further increasing
g
pNa to 0.2%
g
Na caused an immediate increase in APD
90 to 5.7-fold that in control, which decreased to 2.2-fold that in control in 30
s stimulation at 1
Hz. At this time diastolic [Na
+]
i and [Ca
2+]
i were, respectively, 34% and 52% higher than in control and spontaneous erratic SR Ca release occurred.
In the presence of
I
pNa causing 46% lengthening of APD
90, the model cell displayed arrhythmogenic behaviour when external [K
+] was lowered to 5
mM from an initial value at 5.4
mM. By contrast, when K
+ currents
I
Kr and
I
Ks were lowered in the model cell to produce the same lengthening of APD
90, no proarrhythmic behaviour was observed, even when external [K
+] was lowered to 2.5
mM. |
doi_str_mv | 10.1016/j.pbiomolbio.2007.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00325970v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610707000600</els_id><sourcerecordid>70330605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6393e820bebe1516e222f85cc4e9d716666761b89289d7ce2d5eaf5a8ebd51a33</originalsourceid><addsrcrecordid>eNqFkc-OFCEQxonRuOPqKxhOnuyRP0vTfRwn6ppMNMb1TGio2WHSDSPQk-wL-ZzC9sQ9SioQwq--quJDCFOypoS2H47r0-DCFMayrxkhcl2D8WdoRTvJGyo5e45W5aFvWkrkFXqV0pEQwqhsX6IrKruedb1YoT_bg_b3kLDzWJvsgsenkMFnp8eEtbflIUdtYBznUUdcAGfwIUwQUtbJLYn4XDKiM49IZfEULIw4wqgzWJxDYU4QC1-1cQrWzRM2c4z1WiR-br-JDZ7mrGsPCc_eQhwfnL_Hux93_DV6sS8NwZvLeY1-ff50t71tdt-_fN1udo25EX1uWt5z6BgZYAAqaAuMsX0njLmB3kraliVbOjwOb6UBZgXovdAdDFZQzfk1er_oHvSoTtFNOj6ooJ263eyU8wnipAjhTPSSnGnB3y34KYbfM6SsJpfq_NpDmJOShHPSElHAbgFNDClF2P8Tp0RVS9VRPVmqqqWqBqstvb3UmIcJ7FPixcMCfFwAKB9zdhBVMg68AesimKxscP-v8hfJTrsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70330605</pqid></control><display><type>article</type><title>Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Christé, G. ; Chahine, M. ; Chevalier, P. ; Pásek, M.</creator><creatorcontrib>Christé, G. ; Chahine, M. ; Chevalier, P. ; Pásek, M.</creatorcontrib><description>In LQT3 patients, SCN5A mutations induce ultraslow inactivation of a small fraction of the hNav1.5 current, i.e. persistent Na
+ current (
I
pNa). We explored the time course of effects of such a change on the intracellular ionic homeostasis in a model of guinea-pig cardiac ventricular cell [Pasek, M., Simurda, J., Orchard, C.H., Christé, G., 2007b. A model of the guinea-pig ventricular cardiomyocyte incorporating a transverse–axial tubular system. Prog. Biophys. Mol. Biol., this issue]. Sudden addition of
I
pNa prevented action potential (AP) repolarization when its conductance (
g
pNa) exceeded 0.12% of the maximal conductance of fast
I
Na (
g
Na). With
g
pNa at 0.1%
g
Na, the AP duration at 90% repolarization (APD
90) was initially lengthened to 2.6-fold that in control. Under regular stimulation at 1
Hz it shortened progressively to 1.37-fold control APD
90, and intracellular [Na
+]
i increased by 6% with a time constant of 106
s. Further increasing
g
pNa to 0.2%
g
Na caused an immediate increase in APD
90 to 5.7-fold that in control, which decreased to 2.2-fold that in control in 30
s stimulation at 1
Hz. At this time diastolic [Na
+]
i and [Ca
2+]
i were, respectively, 34% and 52% higher than in control and spontaneous erratic SR Ca release occurred.
In the presence of
I
pNa causing 46% lengthening of APD
90, the model cell displayed arrhythmogenic behaviour when external [K
+] was lowered to 5
mM from an initial value at 5.4
mM. By contrast, when K
+ currents
I
Kr and
I
Ks were lowered in the model cell to produce the same lengthening of APD
90, no proarrhythmic behaviour was observed, even when external [K
+] was lowered to 2.5
mM.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2007.07.023</identifier><identifier>PMID: 17892895</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action Potentials - genetics ; Animals ; Cardiology and cardiovascular system ; Computer Science ; Heart Ventricles - cytology ; Homeostasis - genetics ; Human health and pathology ; Humans ; Intracellular Fluid - metabolism ; Intracellular Fluid - physiology ; Life Sciences ; Long QT syndrome ; Long QT Syndrome - genetics ; Long QT Syndrome - metabolism ; Modeling and Simulation ; Models, Cardiovascular ; Mutation ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; NAV1.5 Voltage-Gated Sodium Channel ; SCN5A ; Sodium - physiology ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Sudden death ; Ventricular Function</subject><ispartof>Progress in biophysics and molecular biology, 2008-01, Vol.96 (1), p.281-293</ispartof><rights>2007 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6393e820bebe1516e222f85cc4e9d716666761b89289d7ce2d5eaf5a8ebd51a33</citedby><cites>FETCH-LOGICAL-c459t-6393e820bebe1516e222f85cc4e9d716666761b89289d7ce2d5eaf5a8ebd51a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610707000600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17892895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00325970$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Christé, G.</creatorcontrib><creatorcontrib>Chahine, M.</creatorcontrib><creatorcontrib>Chevalier, P.</creatorcontrib><creatorcontrib>Pásek, M.</creatorcontrib><title>Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>In LQT3 patients, SCN5A mutations induce ultraslow inactivation of a small fraction of the hNav1.5 current, i.e. persistent Na
+ current (
I
pNa). We explored the time course of effects of such a change on the intracellular ionic homeostasis in a model of guinea-pig cardiac ventricular cell [Pasek, M., Simurda, J., Orchard, C.H., Christé, G., 2007b. A model of the guinea-pig ventricular cardiomyocyte incorporating a transverse–axial tubular system. Prog. Biophys. Mol. Biol., this issue]. Sudden addition of
I
pNa prevented action potential (AP) repolarization when its conductance (
g
pNa) exceeded 0.12% of the maximal conductance of fast
I
Na (
g
Na). With
g
pNa at 0.1%
g
Na, the AP duration at 90% repolarization (APD
90) was initially lengthened to 2.6-fold that in control. Under regular stimulation at 1
Hz it shortened progressively to 1.37-fold control APD
90, and intracellular [Na
+]
i increased by 6% with a time constant of 106
s. Further increasing
g
pNa to 0.2%
g
Na caused an immediate increase in APD
90 to 5.7-fold that in control, which decreased to 2.2-fold that in control in 30
s stimulation at 1
Hz. At this time diastolic [Na
+]
i and [Ca
2+]
i were, respectively, 34% and 52% higher than in control and spontaneous erratic SR Ca release occurred.
In the presence of
I
pNa causing 46% lengthening of APD
90, the model cell displayed arrhythmogenic behaviour when external [K
+] was lowered to 5
mM from an initial value at 5.4
mM. By contrast, when K
+ currents
I
Kr and
I
Ks were lowered in the model cell to produce the same lengthening of APD
90, no proarrhythmic behaviour was observed, even when external [K
+] was lowered to 2.5
mM.</description><subject>Action Potentials - genetics</subject><subject>Animals</subject><subject>Cardiology and cardiovascular system</subject><subject>Computer Science</subject><subject>Heart Ventricles - cytology</subject><subject>Homeostasis - genetics</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Intracellular Fluid - metabolism</subject><subject>Intracellular Fluid - physiology</subject><subject>Life Sciences</subject><subject>Long QT syndrome</subject><subject>Long QT Syndrome - genetics</subject><subject>Long QT Syndrome - metabolism</subject><subject>Modeling and Simulation</subject><subject>Models, Cardiovascular</subject><subject>Mutation</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>SCN5A</subject><subject>Sodium - physiology</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Sudden death</subject><subject>Ventricular Function</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-OFCEQxonRuOPqKxhOnuyRP0vTfRwn6ppMNMb1TGio2WHSDSPQk-wL-ZzC9sQ9SioQwq--quJDCFOypoS2H47r0-DCFMayrxkhcl2D8WdoRTvJGyo5e45W5aFvWkrkFXqV0pEQwqhsX6IrKruedb1YoT_bg_b3kLDzWJvsgsenkMFnp8eEtbflIUdtYBznUUdcAGfwIUwQUtbJLYn4XDKiM49IZfEULIw4wqgzWJxDYU4QC1-1cQrWzRM2c4z1WiR-br-JDZ7mrGsPCc_eQhwfnL_Hux93_DV6sS8NwZvLeY1-ff50t71tdt-_fN1udo25EX1uWt5z6BgZYAAqaAuMsX0njLmB3kraliVbOjwOb6UBZgXovdAdDFZQzfk1er_oHvSoTtFNOj6ooJ263eyU8wnipAjhTPSSnGnB3y34KYbfM6SsJpfq_NpDmJOShHPSElHAbgFNDClF2P8Tp0RVS9VRPVmqqqWqBqstvb3UmIcJ7FPixcMCfFwAKB9zdhBVMg68AesimKxscP-v8hfJTrsM</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Christé, G.</creator><creator>Chahine, M.</creator><creator>Chevalier, P.</creator><creator>Pásek, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20080101</creationdate><title>Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3</title><author>Christé, G. ; Chahine, M. ; Chevalier, P. ; Pásek, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6393e820bebe1516e222f85cc4e9d716666761b89289d7ce2d5eaf5a8ebd51a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - genetics</topic><topic>Animals</topic><topic>Cardiology and cardiovascular system</topic><topic>Computer Science</topic><topic>Heart Ventricles - cytology</topic><topic>Homeostasis - genetics</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Intracellular Fluid - metabolism</topic><topic>Intracellular Fluid - physiology</topic><topic>Life Sciences</topic><topic>Long QT syndrome</topic><topic>Long QT Syndrome - genetics</topic><topic>Long QT Syndrome - metabolism</topic><topic>Modeling and Simulation</topic><topic>Models, Cardiovascular</topic><topic>Mutation</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>SCN5A</topic><topic>Sodium - physiology</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Sudden death</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christé, G.</creatorcontrib><creatorcontrib>Chahine, M.</creatorcontrib><creatorcontrib>Chevalier, P.</creatorcontrib><creatorcontrib>Pásek, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christé, G.</au><au>Chahine, M.</au><au>Chevalier, P.</au><au>Pásek, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>96</volume><issue>1</issue><spage>281</spage><epage>293</epage><pages>281-293</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>In LQT3 patients, SCN5A mutations induce ultraslow inactivation of a small fraction of the hNav1.5 current, i.e. persistent Na
+ current (
I
pNa). We explored the time course of effects of such a change on the intracellular ionic homeostasis in a model of guinea-pig cardiac ventricular cell [Pasek, M., Simurda, J., Orchard, C.H., Christé, G., 2007b. A model of the guinea-pig ventricular cardiomyocyte incorporating a transverse–axial tubular system. Prog. Biophys. Mol. Biol., this issue]. Sudden addition of
I
pNa prevented action potential (AP) repolarization when its conductance (
g
pNa) exceeded 0.12% of the maximal conductance of fast
I
Na (
g
Na). With
g
pNa at 0.1%
g
Na, the AP duration at 90% repolarization (APD
90) was initially lengthened to 2.6-fold that in control. Under regular stimulation at 1
Hz it shortened progressively to 1.37-fold control APD
90, and intracellular [Na
+]
i increased by 6% with a time constant of 106
s. Further increasing
g
pNa to 0.2%
g
Na caused an immediate increase in APD
90 to 5.7-fold that in control, which decreased to 2.2-fold that in control in 30
s stimulation at 1
Hz. At this time diastolic [Na
+]
i and [Ca
2+]
i were, respectively, 34% and 52% higher than in control and spontaneous erratic SR Ca release occurred.
In the presence of
I
pNa causing 46% lengthening of APD
90, the model cell displayed arrhythmogenic behaviour when external [K
+] was lowered to 5
mM from an initial value at 5.4
mM. By contrast, when K
+ currents
I
Kr and
I
Ks were lowered in the model cell to produce the same lengthening of APD
90, no proarrhythmic behaviour was observed, even when external [K
+] was lowered to 2.5
mM.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17892895</pmid><doi>10.1016/j.pbiomolbio.2007.07.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2008-01, Vol.96 (1), p.281-293 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00325970v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials - genetics Animals Cardiology and cardiovascular system Computer Science Heart Ventricles - cytology Homeostasis - genetics Human health and pathology Humans Intracellular Fluid - metabolism Intracellular Fluid - physiology Life Sciences Long QT syndrome Long QT Syndrome - genetics Long QT Syndrome - metabolism Modeling and Simulation Models, Cardiovascular Mutation Myocytes, Cardiac - metabolism Myocytes, Cardiac - physiology NAV1.5 Voltage-Gated Sodium Channel SCN5A Sodium - physiology Sodium Channels - genetics Sodium Channels - metabolism Sudden death Ventricular Function |
title | Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20action%20potentials%20and%20intracellular%20ionic%20homeostasis%20in%20a%20ventricular%20cell%20model%20related%20to%20a%20persistent%20sodium%20current%20in%20SCN5A%20mutations%20underlying%20LQT3&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Christ%C3%A9,%20G.&rft.date=2008-01-01&rft.volume=96&rft.issue=1&rft.spage=281&rft.epage=293&rft.pages=281-293&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2007.07.023&rft_dat=%3Cproquest_hal_p%3E70330605%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70330605&rft_id=info:pmid/17892895&rft_els_id=S0079610707000600&rfr_iscdi=true |