Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice

The bacterial lacZ gene encoding for β-galactosidase (β-gal) is a common reporter gene used in transgenic mice. Nonetheless, the absence of fluorigenic substrates usable in live animals greatly hampered the non-invasive follow-up of this reporter gene expression. We used far-red fluorescence for ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2007-11, Vol.14 (22), p.1587-1593
Hauptverfasser: Josserand, V, Texier-Nogues, I, Huber, P, Favrot, M-C, Coll, J-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1593
container_issue 22
container_start_page 1587
container_title Gene therapy
container_volume 14
creator Josserand, V
Texier-Nogues, I
Huber, P
Favrot, M-C
Coll, J-L
description The bacterial lacZ gene encoding for β-galactosidase (β-gal) is a common reporter gene used in transgenic mice. Nonetheless, the absence of fluorigenic substrates usable in live animals greatly hampered the non-invasive follow-up of this reporter gene expression. We used far-red fluorescence for imaging β-Gal expression in live cells in vitro or in vivo . The 9 H -(1,3-dichloro-9,9-dimethylacridin- 2-one-7-yl) β- D -galactopyranoside substrate was used to monitor β-Gal expression as a reporter of tumor growth, or of the physiological levels of an endogenous gene or of gene transfer in lung. A quantitative evaluation of this method as well as a comparison of its sensitivity with Firefly Luciferase-based bioluminescence was also performed. In vivo measurements showed that 10 3 β-Gal tumor cells located under the skin were detectable. In deeper organs like lung, as little as 5 ng of β-Gal or Luciferase enzymes per mg of proteins were measured, confirming that both techniques reached similar sensibilities. Nonetheless, quantitative comparison of β-Gal levels measured with far-red imaging or with a standardized enzymatic evaluation after killing revealed that the 2D-fluorescent reflectance imaging method is submitted to a color-dependent disparity of the organs and cannot supply quantitative measurements but that a simple correction can be applied.
doi_str_mv 10.1038/sj.gt.3303028
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00313784v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A253741193</galeid><sourcerecordid>A253741193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-285eb5c8b7b443b4bb90604008125720c5ae1dc6415d94b921d43a68797485a03</originalsourceid><addsrcrecordid>eNqF0tuL1DAUB-AiijuuPvoqQXFBsGPul8dhUXdhUPHy4ktI07SToZOMTVvW_96sUxxHFOlDof1OkvPLKYrHCC4RJPJV2i7bYUkIJBDLO8UCUcFLRjm-Wyyg4qoUCMuz4kFKWwghFRLfL86QkBJjThfFh3cxlD5MJvnJAR_A5KcI4n7w1nTA70zrQwtiA4aNA52xX4EJNehGC1oXHHA3-96l5GO4rd156x4W9xrTJfdofp8XX968_nx5Va7fv72-XK1Ly6QYSiyZq5iVlagoJRWtKgU5pBBKhJnA0DLjUG05RaxWtFIY1ZQYLoUSVDIDyXnx8rDuxnR63-eT9t91NF5frdbah-T6nYaQICIknVDmFwe-7-O30aVB73yyrutMcHFMmsucG-fsvxApyViWGT77A27j2Ifcs87JMoK5giqrp_9USAoo801ltDyg1nQuH76JQ29sfmqXI43BNT5_X2FGBEVIkVzw4qQgm8HdDK0ZU9LXnz6e2ovf7MaZbtik2I1DvrR0CssDtH1MqXfNr1gR1LezptNWt4OeZy37J3NrY7Vz9VHPw5XB8xmYlKep6U2wPh2dylnynwvN7af8K7SuP2b0951_APGm5Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218708462</pqid></control><display><type>article</type><title>Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Josserand, V ; Texier-Nogues, I ; Huber, P ; Favrot, M-C ; Coll, J-L</creator><creatorcontrib>Josserand, V ; Texier-Nogues, I ; Huber, P ; Favrot, M-C ; Coll, J-L</creatorcontrib><description>The bacterial lacZ gene encoding for β-galactosidase (β-gal) is a common reporter gene used in transgenic mice. Nonetheless, the absence of fluorigenic substrates usable in live animals greatly hampered the non-invasive follow-up of this reporter gene expression. We used far-red fluorescence for imaging β-Gal expression in live cells in vitro or in vivo . The 9 H -(1,3-dichloro-9,9-dimethylacridin- 2-one-7-yl) β- D -galactopyranoside substrate was used to monitor β-Gal expression as a reporter of tumor growth, or of the physiological levels of an endogenous gene or of gene transfer in lung. A quantitative evaluation of this method as well as a comparison of its sensitivity with Firefly Luciferase-based bioluminescence was also performed. In vivo measurements showed that 10 3 β-Gal tumor cells located under the skin were detectable. In deeper organs like lung, as little as 5 ng of β-Gal or Luciferase enzymes per mg of proteins were measured, confirming that both techniques reached similar sensibilities. Nonetheless, quantitative comparison of β-Gal levels measured with far-red imaging or with a standardized enzymatic evaluation after killing revealed that the 2D-fluorescent reflectance imaging method is submitted to a color-dependent disparity of the organs and cannot supply quantitative measurements but that a simple correction can be applied.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/sj.gt.3303028</identifier><identifier>PMID: 17882264</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Applied cell therapy and gene therapy ; Bacteria ; beta-Galactosidase ; beta-Galactosidase - analysis ; Biological and medical sciences ; Bioluminescence ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Cancer ; Cell Biology ; Diagnostic imaging ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Therapy ; Gene transfer ; Genes, Reporter ; Genetic Markers ; Genetic Therapy - methods ; Health. Pharmaceutical industry ; Human Genetics ; Industrial applications and implications. Economical aspects ; Kinases ; Lac Operon ; LacZ gene ; Life Sciences ; LUC gene ; Luciferases ; Luciferases - genetics ; Luminescence ; Luminescent Proteins ; Medical imaging ; Medical sciences ; Methods ; Mice ; Mice, Transgenic ; Microscopy, Fluorescence ; Microscopy, Fluorescence - methods ; Nanotechnology ; Neoplasms ; Neoplasms - therapy ; Operons ; original-article ; Reporter gene ; Rodents ; Transfection ; Transfection - methods ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Transgenic animals ; Transgenic mice ; Tumor cells ; Tumors ; β-Galactosidase</subject><ispartof>Gene therapy, 2007-11, Vol.14 (22), p.1587-1593</ispartof><rights>Springer Nature Limited 2007</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2007</rights><rights>Nature Publishing Group 2007.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-285eb5c8b7b443b4bb90604008125720c5ae1dc6415d94b921d43a68797485a03</citedby><cites>FETCH-LOGICAL-c587t-285eb5c8b7b443b4bb90604008125720c5ae1dc6415d94b921d43a68797485a03</cites><orcidid>0000-0001-6733-3801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.gt.3303028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.gt.3303028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19198628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17882264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00313784$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Josserand, V</creatorcontrib><creatorcontrib>Texier-Nogues, I</creatorcontrib><creatorcontrib>Huber, P</creatorcontrib><creatorcontrib>Favrot, M-C</creatorcontrib><creatorcontrib>Coll, J-L</creatorcontrib><title>Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>The bacterial lacZ gene encoding for β-galactosidase (β-gal) is a common reporter gene used in transgenic mice. Nonetheless, the absence of fluorigenic substrates usable in live animals greatly hampered the non-invasive follow-up of this reporter gene expression. We used far-red fluorescence for imaging β-Gal expression in live cells in vitro or in vivo . The 9 H -(1,3-dichloro-9,9-dimethylacridin- 2-one-7-yl) β- D -galactopyranoside substrate was used to monitor β-Gal expression as a reporter of tumor growth, or of the physiological levels of an endogenous gene or of gene transfer in lung. A quantitative evaluation of this method as well as a comparison of its sensitivity with Firefly Luciferase-based bioluminescence was also performed. In vivo measurements showed that 10 3 β-Gal tumor cells located under the skin were detectable. In deeper organs like lung, as little as 5 ng of β-Gal or Luciferase enzymes per mg of proteins were measured, confirming that both techniques reached similar sensibilities. Nonetheless, quantitative comparison of β-Gal levels measured with far-red imaging or with a standardized enzymatic evaluation after killing revealed that the 2D-fluorescent reflectance imaging method is submitted to a color-dependent disparity of the organs and cannot supply quantitative measurements but that a simple correction can be applied.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>Bacteria</subject><subject>beta-Galactosidase</subject><subject>beta-Galactosidase - analysis</subject><subject>Biological and medical sciences</subject><subject>Bioluminescence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Diagnostic imaging</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Gene transfer</subject><subject>Genes, Reporter</subject><subject>Genetic Markers</subject><subject>Genetic Therapy - methods</subject><subject>Health. Pharmaceutical industry</subject><subject>Human Genetics</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinases</subject><subject>Lac Operon</subject><subject>LacZ gene</subject><subject>Life Sciences</subject><subject>LUC gene</subject><subject>Luciferases</subject><subject>Luciferases - genetics</subject><subject>Luminescence</subject><subject>Luminescent Proteins</subject><subject>Medical imaging</subject><subject>Medical sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Fluorescence</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nanotechnology</subject><subject>Neoplasms</subject><subject>Neoplasms - therapy</subject><subject>Operons</subject><subject>original-article</subject><subject>Reporter gene</subject><subject>Rodents</subject><subject>Transfection</subject><subject>Transfection - methods</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>β-Galactosidase</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tuL1DAUB-AiijuuPvoqQXFBsGPul8dhUXdhUPHy4ktI07SToZOMTVvW_96sUxxHFOlDof1OkvPLKYrHCC4RJPJV2i7bYUkIJBDLO8UCUcFLRjm-Wyyg4qoUCMuz4kFKWwghFRLfL86QkBJjThfFh3cxlD5MJvnJAR_A5KcI4n7w1nTA70zrQwtiA4aNA52xX4EJNehGC1oXHHA3-96l5GO4rd156x4W9xrTJfdofp8XX968_nx5Va7fv72-XK1Ly6QYSiyZq5iVlagoJRWtKgU5pBBKhJnA0DLjUG05RaxWtFIY1ZQYLoUSVDIDyXnx8rDuxnR63-eT9t91NF5frdbah-T6nYaQICIknVDmFwe-7-O30aVB73yyrutMcHFMmsucG-fsvxApyViWGT77A27j2Ifcs87JMoK5giqrp_9USAoo801ltDyg1nQuH76JQ29sfmqXI43BNT5_X2FGBEVIkVzw4qQgm8HdDK0ZU9LXnz6e2ovf7MaZbtik2I1DvrR0CssDtH1MqXfNr1gR1LezptNWt4OeZy37J3NrY7Vz9VHPw5XB8xmYlKep6U2wPh2dylnynwvN7af8K7SuP2b0951_APGm5Yg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Josserand, V</creator><creator>Texier-Nogues, I</creator><creator>Huber, P</creator><creator>Favrot, M-C</creator><creator>Coll, J-L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QL</scope><scope>7QO</scope><scope>C1K</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6733-3801</orcidid></search><sort><creationdate>20071101</creationdate><title>Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice</title><author>Josserand, V ; Texier-Nogues, I ; Huber, P ; Favrot, M-C ; Coll, J-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-285eb5c8b7b443b4bb90604008125720c5ae1dc6415d94b921d43a68797485a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>Bacteria</topic><topic>beta-Galactosidase</topic><topic>beta-Galactosidase - analysis</topic><topic>Biological and medical sciences</topic><topic>Bioluminescence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Diagnostic imaging</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Gene transfer</topic><topic>Genes, Reporter</topic><topic>Genetic Markers</topic><topic>Genetic Therapy - methods</topic><topic>Health. Pharmaceutical industry</topic><topic>Human Genetics</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinases</topic><topic>Lac Operon</topic><topic>LacZ gene</topic><topic>Life Sciences</topic><topic>LUC gene</topic><topic>Luciferases</topic><topic>Luciferases - genetics</topic><topic>Luminescence</topic><topic>Luminescent Proteins</topic><topic>Medical imaging</topic><topic>Medical sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Fluorescence</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nanotechnology</topic><topic>Neoplasms</topic><topic>Neoplasms - therapy</topic><topic>Operons</topic><topic>original-article</topic><topic>Reporter gene</topic><topic>Rodents</topic><topic>Transfection</topic><topic>Transfection - methods</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Josserand, V</creatorcontrib><creatorcontrib>Texier-Nogues, I</creatorcontrib><creatorcontrib>Huber, P</creatorcontrib><creatorcontrib>Favrot, M-C</creatorcontrib><creatorcontrib>Coll, J-L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Josserand, V</au><au>Texier-Nogues, I</au><au>Huber, P</au><au>Favrot, M-C</au><au>Coll, J-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>14</volume><issue>22</issue><spage>1587</spage><epage>1593</epage><pages>1587-1593</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>The bacterial lacZ gene encoding for β-galactosidase (β-gal) is a common reporter gene used in transgenic mice. Nonetheless, the absence of fluorigenic substrates usable in live animals greatly hampered the non-invasive follow-up of this reporter gene expression. We used far-red fluorescence for imaging β-Gal expression in live cells in vitro or in vivo . The 9 H -(1,3-dichloro-9,9-dimethylacridin- 2-one-7-yl) β- D -galactopyranoside substrate was used to monitor β-Gal expression as a reporter of tumor growth, or of the physiological levels of an endogenous gene or of gene transfer in lung. A quantitative evaluation of this method as well as a comparison of its sensitivity with Firefly Luciferase-based bioluminescence was also performed. In vivo measurements showed that 10 3 β-Gal tumor cells located under the skin were detectable. In deeper organs like lung, as little as 5 ng of β-Gal or Luciferase enzymes per mg of proteins were measured, confirming that both techniques reached similar sensibilities. Nonetheless, quantitative comparison of β-Gal levels measured with far-red imaging or with a standardized enzymatic evaluation after killing revealed that the 2D-fluorescent reflectance imaging method is submitted to a color-dependent disparity of the organs and cannot supply quantitative measurements but that a simple correction can be applied.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17882264</pmid><doi>10.1038/sj.gt.3303028</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6733-3801</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2007-11, Vol.14 (22), p.1587-1593
issn 0969-7128
1476-5462
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00313784v1
source MEDLINE; SpringerLink (Online service); EZB-FREE-00999 freely available EZB journals
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Applied cell therapy and gene therapy
Bacteria
beta-Galactosidase
beta-Galactosidase - analysis
Biological and medical sciences
Bioluminescence
Biomedical and Life Sciences
Biomedicine
Biotechnology
Cancer
Cell Biology
Diagnostic imaging
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Therapy
Gene transfer
Genes, Reporter
Genetic Markers
Genetic Therapy - methods
Health. Pharmaceutical industry
Human Genetics
Industrial applications and implications. Economical aspects
Kinases
Lac Operon
LacZ gene
Life Sciences
LUC gene
Luciferases
Luciferases - genetics
Luminescence
Luminescent Proteins
Medical imaging
Medical sciences
Methods
Mice
Mice, Transgenic
Microscopy, Fluorescence
Microscopy, Fluorescence - methods
Nanotechnology
Neoplasms
Neoplasms - therapy
Operons
original-article
Reporter gene
Rodents
Transfection
Transfection - methods
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Transgenic animals
Transgenic mice
Tumor cells
Tumors
β-Galactosidase
title Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20in%20vivo%20optical%20imaging%20of%20the%20lacZ%20and%20luc%20gene%20expression%20in%20mice&rft.jtitle=Gene%20therapy&rft.au=Josserand,%20V&rft.date=2007-11-01&rft.volume=14&rft.issue=22&rft.spage=1587&rft.epage=1593&rft.pages=1587-1593&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/sj.gt.3303028&rft_dat=%3Cgale_hal_p%3EA253741193%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218708462&rft_id=info:pmid/17882264&rft_galeid=A253741193&rfr_iscdi=true