Indirect Boundary Element Method applied to fluid–solid interfaces

In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2011-03, Vol.31 (3), p.470-477
Hauptverfasser: Rodríguez-Castellanos, A., Flores, E., Sánchez-Sesma, F.J., Ortiz-Alemán, C., Nava-Flores, M., Martin, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 3
container_start_page 470
container_title Soil dynamics and earthquake engineering (1984)
container_volume 31
creator Rodríguez-Castellanos, A.
Flores, E.
Sánchez-Sesma, F.J.
Ortiz-Alemán, C.
Nava-Flores, M.
Martin, R.
description In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the other solid in the bottom; a second model including a fluid half-space above a layered solid; and finally, a third model with a fluid layer bounded by two solid half-spaces. The source, represented by Hankel's function of the second kind, is always applied in the fluid. This indirect formulation can give to the analyst a deep physical insight on the generated diffracted waves because it is closer to the physical reality and can be regarded as a realization of Huygens' principle. In any event, mathematically it is fully equivalent to the classical Somigliana's representation theorem. In order to gauge accuracy we test our method by comparing with an analytical solution known as Discrete Wave Number. A near interface pulse generates scattered waves that can be registered by receivers located in the fluid and it is possible to infer wave velocities of solids. Results are presented in both time and frequency domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.
doi_str_mv 10.1016/j.soildyn.2010.10.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00544999v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0267726110002435</els_id><sourcerecordid>1671464421</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-f88cca0f3bc2d963af3f4694bb0ad4a260d7b1f2dcf6007a8b412a8119c90cbc3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOK4-gtAXUZAeK-lMkj7J7rq6CyNeFLyF6vxhM2SSMelZ2Jvv4Bv6JHbbwx71VFD86qv66iPkJYU1BSre7dY1h2jv05rB394aQD4iK6pk33acfn9MVsCEbCUT9Cl5VusOgEqqxIp8uEk2FGfG5iIfk8Vy31xFt3dpbD678TbbBg-HGJxtxtz4eAz2989fNcdgm5BGVzwaV5-TJx5jdS9O9Yx8-3j19fK63X75dHN5vm2Ri25svVLGIPhuMMz2okPfeS56PgyAliMTYOVAPbPGi8kBqoFThorS3vRgBtOdkbeL7i1GfShhP52rMwZ9fb7VIZWAGmDDed_3d3SiXy_0oeQfR1dHvQ_VuBgxuXysWgnOQckNTOSbf5JUSMonms2imwU1JddanH-4g4Ke09A7fUpDz2nM7cnLNPfqtAKrwegLJhPqwzDrVAcbOeu_Xzg3_fEuuKKrCS4Zt6SkbQ7_2fQHKtejYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671464421</pqid></control><display><type>article</type><title>Indirect Boundary Element Method applied to fluid–solid interfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Rodríguez-Castellanos, A. ; Flores, E. ; Sánchez-Sesma, F.J. ; Ortiz-Alemán, C. ; Nava-Flores, M. ; Martin, R.</creator><creatorcontrib>Rodríguez-Castellanos, A. ; Flores, E. ; Sánchez-Sesma, F.J. ; Ortiz-Alemán, C. ; Nava-Flores, M. ; Martin, R.</creatorcontrib><description>In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the other solid in the bottom; a second model including a fluid half-space above a layered solid; and finally, a third model with a fluid layer bounded by two solid half-spaces. The source, represented by Hankel's function of the second kind, is always applied in the fluid. This indirect formulation can give to the analyst a deep physical insight on the generated diffracted waves because it is closer to the physical reality and can be regarded as a realization of Huygens' principle. In any event, mathematically it is fully equivalent to the classical Somigliana's representation theorem. In order to gauge accuracy we test our method by comparing with an analytical solution known as Discrete Wave Number. A near interface pulse generates scattered waves that can be registered by receivers located in the fluid and it is possible to infer wave velocities of solids. Results are presented in both time and frequency domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.</description><identifier>ISSN: 0267-7261</identifier><identifier>EISSN: 1879-341X</identifier><identifier>DOI: 10.1016/j.soildyn.2010.10.007</identifier><identifier>CODEN: SDEEEJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundary element method ; Computational fluid dynamics ; Computer Science ; Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Fluid flow ; Fluids ; Half spaces ; Internal geophysics ; Mathematical analysis ; Mathematical models ; Natural hazards: prediction, damages, etc ; Seismic phenomena</subject><ispartof>Soil dynamics and earthquake engineering (1984), 2011-03, Vol.31 (3), p.470-477</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-f88cca0f3bc2d963af3f4694bb0ad4a260d7b1f2dcf6007a8b412a8119c90cbc3</citedby><cites>FETCH-LOGICAL-a463t-f88cca0f3bc2d963af3f4694bb0ad4a260d7b1f2dcf6007a8b412a8119c90cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0267726110002435$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23830571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00544999$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Castellanos, A.</creatorcontrib><creatorcontrib>Flores, E.</creatorcontrib><creatorcontrib>Sánchez-Sesma, F.J.</creatorcontrib><creatorcontrib>Ortiz-Alemán, C.</creatorcontrib><creatorcontrib>Nava-Flores, M.</creatorcontrib><creatorcontrib>Martin, R.</creatorcontrib><title>Indirect Boundary Element Method applied to fluid–solid interfaces</title><title>Soil dynamics and earthquake engineering (1984)</title><description>In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the other solid in the bottom; a second model including a fluid half-space above a layered solid; and finally, a third model with a fluid layer bounded by two solid half-spaces. The source, represented by Hankel's function of the second kind, is always applied in the fluid. This indirect formulation can give to the analyst a deep physical insight on the generated diffracted waves because it is closer to the physical reality and can be regarded as a realization of Huygens' principle. In any event, mathematically it is fully equivalent to the classical Somigliana's representation theorem. In order to gauge accuracy we test our method by comparing with an analytical solution known as Discrete Wave Number. A near interface pulse generates scattered waves that can be registered by receivers located in the fluid and it is possible to infer wave velocities of solids. Results are presented in both time and frequency domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.</description><subject>Boundary element method</subject><subject>Computational fluid dynamics</subject><subject>Computer Science</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Half spaces</subject><subject>Internal geophysics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Seismic phenomena</subject><issn>0267-7261</issn><issn>1879-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOK4-gtAXUZAeK-lMkj7J7rq6CyNeFLyF6vxhM2SSMelZ2Jvv4Bv6JHbbwx71VFD86qv66iPkJYU1BSre7dY1h2jv05rB394aQD4iK6pk33acfn9MVsCEbCUT9Cl5VusOgEqqxIp8uEk2FGfG5iIfk8Vy31xFt3dpbD678TbbBg-HGJxtxtz4eAz2989fNcdgm5BGVzwaV5-TJx5jdS9O9Yx8-3j19fK63X75dHN5vm2Ri25svVLGIPhuMMz2okPfeS56PgyAliMTYOVAPbPGi8kBqoFThorS3vRgBtOdkbeL7i1GfShhP52rMwZ9fb7VIZWAGmDDed_3d3SiXy_0oeQfR1dHvQ_VuBgxuXysWgnOQckNTOSbf5JUSMonms2imwU1JddanH-4g4Ke09A7fUpDz2nM7cnLNPfqtAKrwegLJhPqwzDrVAcbOeu_Xzg3_fEuuKKrCS4Zt6SkbQ7_2fQHKtejYg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Rodríguez-Castellanos, A.</creator><creator>Flores, E.</creator><creator>Sánchez-Sesma, F.J.</creator><creator>Ortiz-Alemán, C.</creator><creator>Nava-Flores, M.</creator><creator>Martin, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7T2</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>20110301</creationdate><title>Indirect Boundary Element Method applied to fluid–solid interfaces</title><author>Rodríguez-Castellanos, A. ; Flores, E. ; Sánchez-Sesma, F.J. ; Ortiz-Alemán, C. ; Nava-Flores, M. ; Martin, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-f88cca0f3bc2d963af3f4694bb0ad4a260d7b1f2dcf6007a8b412a8119c90cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary element method</topic><topic>Computational fluid dynamics</topic><topic>Computer Science</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Half spaces</topic><topic>Internal geophysics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Seismic phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Castellanos, A.</creatorcontrib><creatorcontrib>Flores, E.</creatorcontrib><creatorcontrib>Sánchez-Sesma, F.J.</creatorcontrib><creatorcontrib>Ortiz-Alemán, C.</creatorcontrib><creatorcontrib>Nava-Flores, M.</creatorcontrib><creatorcontrib>Martin, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Castellanos, A.</au><au>Flores, E.</au><au>Sánchez-Sesma, F.J.</au><au>Ortiz-Alemán, C.</au><au>Nava-Flores, M.</au><au>Martin, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Boundary Element Method applied to fluid–solid interfaces</atitle><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>3</issue><spage>470</spage><epage>477</epage><pages>470-477</pages><issn>0267-7261</issn><eissn>1879-341X</eissn><coden>SDEEEJ</coden><abstract>In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the other solid in the bottom; a second model including a fluid half-space above a layered solid; and finally, a third model with a fluid layer bounded by two solid half-spaces. The source, represented by Hankel's function of the second kind, is always applied in the fluid. This indirect formulation can give to the analyst a deep physical insight on the generated diffracted waves because it is closer to the physical reality and can be regarded as a realization of Huygens' principle. In any event, mathematically it is fully equivalent to the classical Somigliana's representation theorem. In order to gauge accuracy we test our method by comparing with an analytical solution known as Discrete Wave Number. A near interface pulse generates scattered waves that can be registered by receivers located in the fluid and it is possible to infer wave velocities of solids. Results are presented in both time and frequency domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soildyn.2010.10.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-7261
ispartof Soil dynamics and earthquake engineering (1984), 2011-03, Vol.31 (3), p.470-477
issn 0267-7261
1879-341X
language eng
recordid cdi_hal_primary_oai_HAL_inria_00544999v1
source Elsevier ScienceDirect Journals
subjects Boundary element method
Computational fluid dynamics
Computer Science
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Fluid flow
Fluids
Half spaces
Internal geophysics
Mathematical analysis
Mathematical models
Natural hazards: prediction, damages, etc
Seismic phenomena
title Indirect Boundary Element Method applied to fluid–solid interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Boundary%20Element%20Method%20applied%20to%20fluid%E2%80%93solid%20interfaces&rft.jtitle=Soil%20dynamics%20and%20earthquake%20engineering%20(1984)&rft.au=Rodr%C3%ADguez-Castellanos,%20A.&rft.date=2011-03-01&rft.volume=31&rft.issue=3&rft.spage=470&rft.epage=477&rft.pages=470-477&rft.issn=0267-7261&rft.eissn=1879-341X&rft.coden=SDEEEJ&rft_id=info:doi/10.1016/j.soildyn.2010.10.007&rft_dat=%3Cproquest_hal_p%3E1671464421%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671464421&rft_id=info:pmid/&rft_els_id=S0267726110002435&rfr_iscdi=true