Parallel geometric algorithms for multi-core computers
Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The algorithms we describe are (a) 2-/3-dimensional s...
Gespeichert in:
Veröffentlicht in: | Computational geometry : theory and applications 2010-10, Vol.43 (8), p.663-677 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 8 |
container_start_page | 663 |
container_title | Computational geometry : theory and applications |
container_volume | 43 |
creator | Batista, Vicente H.F. Millman, David L. Pion, Sylvain Singler, Johannes |
description | Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The algorithms we describe are (a) 2-/3-dimensional spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b)
d-dimensional axis-aligned box intersection computation, and finally (c) 3D bulk insertion of points into Delaunay triangulations, which can be used for mesh generation algorithms, or simply for constructing 3D Delaunay triangulations. For the latter, we introduce as a foundational element the design of a container data structure that both provides concurrent addition and removal operations and is compact in memory. This makes it especially well-suited for storing large dynamic graphs such as Delaunay triangulations.
We show experimental results for these algorithms, using our implementations based on the Computational Geometry Algorithms Library (CGAL). This work is a step towards what we hope will become a
parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention. |
doi_str_mv | 10.1016/j.comgeo.2010.04.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00488961v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925772110000362</els_id><sourcerecordid>753668082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-744b54fe50ba521326f869257f8d63290ae21cf0cbb3b451bea528312bbf53733</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARCn8A4ZsDCjh_JHEWZCqii-pEgwwW457aV05dbGTSvx7XAUxMlk6Pe9zvpeQGwoFBVrd7wrj-w36gkEagSgA5BmZQcPKvK4ZvSCXMe4AgLGymZHqXQftHLosZXocgjWZdhsf7LDtY9b5kPWjG2xufMAsqQ_jgCFekfNOu4jXv--cfD49fixf8tXb8-tyscqNYDDktRBtKTosodUlo5xVnazST-pOrivOGtDIqOnAtC1vRUlbTJjklLVtV_Ka8zm5m7xb7dQh2F6Hb-W1VS-LlbL7YLUCEFI2FT3SRN9O9CH4rxHjoHobDTqn9-jHqOqSV5UEyRIpJtIEH2PA7k9OQZ16VDs19ahOPSoQaY9MsYcphunmo8WgorG4N7i2Ac2g1t7-L_gB2MV-bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753668082</pqid></control><display><type>article</type><title>Parallel geometric algorithms for multi-core computers</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Batista, Vicente H.F. ; Millman, David L. ; Pion, Sylvain ; Singler, Johannes</creator><creatorcontrib>Batista, Vicente H.F. ; Millman, David L. ; Pion, Sylvain ; Singler, Johannes</creatorcontrib><description>Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The algorithms we describe are (a) 2-/3-dimensional spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b)
d-dimensional axis-aligned box intersection computation, and finally (c) 3D bulk insertion of points into Delaunay triangulations, which can be used for mesh generation algorithms, or simply for constructing 3D Delaunay triangulations. For the latter, we introduce as a foundational element the design of a container data structure that both provides concurrent addition and removal operations and is compact in memory. This makes it especially well-suited for storing large dynamic graphs such as Delaunay triangulations.
We show experimental results for these algorithms, using our implementations based on the Computational Geometry Algorithms Library (CGAL). This work is a step towards what we hope will become a
parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention.</description><identifier>ISSN: 0925-7721</identifier><identifier>DOI: 10.1016/j.comgeo.2010.04.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Box intersection ; Compact container ; Computation ; Computational Geometry ; Computer Science ; Data structures ; Delaunay triangulation ; Delaunay triangulations ; Distributed, Parallel, and Cluster Computing ; Geometric algorithms ; Mesh generation ; Parallel algorithms ; Spatial sort ; Three dimensional</subject><ispartof>Computational geometry : theory and applications, 2010-10, Vol.43 (8), p.663-677</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-744b54fe50ba521326f869257f8d63290ae21cf0cbb3b451bea528312bbf53733</citedby><cites>FETCH-LOGICAL-c420t-744b54fe50ba521326f869257f8d63290ae21cf0cbb3b451bea528312bbf53733</cites><orcidid>0000-0001-9277-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comgeo.2010.04.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://inria.hal.science/inria-00488961$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Batista, Vicente H.F.</creatorcontrib><creatorcontrib>Millman, David L.</creatorcontrib><creatorcontrib>Pion, Sylvain</creatorcontrib><creatorcontrib>Singler, Johannes</creatorcontrib><title>Parallel geometric algorithms for multi-core computers</title><title>Computational geometry : theory and applications</title><description>Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The algorithms we describe are (a) 2-/3-dimensional spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b)
d-dimensional axis-aligned box intersection computation, and finally (c) 3D bulk insertion of points into Delaunay triangulations, which can be used for mesh generation algorithms, or simply for constructing 3D Delaunay triangulations. For the latter, we introduce as a foundational element the design of a container data structure that both provides concurrent addition and removal operations and is compact in memory. This makes it especially well-suited for storing large dynamic graphs such as Delaunay triangulations.
We show experimental results for these algorithms, using our implementations based on the Computational Geometry Algorithms Library (CGAL). This work is a step towards what we hope will become a
parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention.</description><subject>Algorithms</subject><subject>Box intersection</subject><subject>Compact container</subject><subject>Computation</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Data structures</subject><subject>Delaunay triangulation</subject><subject>Delaunay triangulations</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Geometric algorithms</subject><subject>Mesh generation</subject><subject>Parallel algorithms</subject><subject>Spatial sort</subject><subject>Three dimensional</subject><issn>0925-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARCn8A4ZsDCjh_JHEWZCqii-pEgwwW457aV05dbGTSvx7XAUxMlk6Pe9zvpeQGwoFBVrd7wrj-w36gkEagSgA5BmZQcPKvK4ZvSCXMe4AgLGymZHqXQftHLosZXocgjWZdhsf7LDtY9b5kPWjG2xufMAsqQ_jgCFekfNOu4jXv--cfD49fixf8tXb8-tyscqNYDDktRBtKTosodUlo5xVnazST-pOrivOGtDIqOnAtC1vRUlbTJjklLVtV_Ka8zm5m7xb7dQh2F6Hb-W1VS-LlbL7YLUCEFI2FT3SRN9O9CH4rxHjoHobDTqn9-jHqOqSV5UEyRIpJtIEH2PA7k9OQZ16VDs19ahOPSoQaY9MsYcphunmo8WgorG4N7i2Ac2g1t7-L_gB2MV-bw</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Batista, Vicente H.F.</creator><creator>Millman, David L.</creator><creator>Pion, Sylvain</creator><creator>Singler, Johannes</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9277-3446</orcidid></search><sort><creationdate>20101001</creationdate><title>Parallel geometric algorithms for multi-core computers</title><author>Batista, Vicente H.F. ; Millman, David L. ; Pion, Sylvain ; Singler, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-744b54fe50ba521326f869257f8d63290ae21cf0cbb3b451bea528312bbf53733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Box intersection</topic><topic>Compact container</topic><topic>Computation</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Data structures</topic><topic>Delaunay triangulation</topic><topic>Delaunay triangulations</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Geometric algorithms</topic><topic>Mesh generation</topic><topic>Parallel algorithms</topic><topic>Spatial sort</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batista, Vicente H.F.</creatorcontrib><creatorcontrib>Millman, David L.</creatorcontrib><creatorcontrib>Pion, Sylvain</creatorcontrib><creatorcontrib>Singler, Johannes</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational geometry : theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batista, Vicente H.F.</au><au>Millman, David L.</au><au>Pion, Sylvain</au><au>Singler, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel geometric algorithms for multi-core computers</atitle><jtitle>Computational geometry : theory and applications</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>43</volume><issue>8</issue><spage>663</spage><epage>677</epage><pages>663-677</pages><issn>0925-7721</issn><abstract>Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The algorithms we describe are (a) 2-/3-dimensional spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b)
d-dimensional axis-aligned box intersection computation, and finally (c) 3D bulk insertion of points into Delaunay triangulations, which can be used for mesh generation algorithms, or simply for constructing 3D Delaunay triangulations. For the latter, we introduce as a foundational element the design of a container data structure that both provides concurrent addition and removal operations and is compact in memory. This makes it especially well-suited for storing large dynamic graphs such as Delaunay triangulations.
We show experimental results for these algorithms, using our implementations based on the Computational Geometry Algorithms Library (CGAL). This work is a step towards what we hope will become a
parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comgeo.2010.04.008</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9277-3446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-7721 |
ispartof | Computational geometry : theory and applications, 2010-10, Vol.43 (8), p.663-677 |
issn | 0925-7721 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00488961v1 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Algorithms Box intersection Compact container Computation Computational Geometry Computer Science Data structures Delaunay triangulation Delaunay triangulations Distributed, Parallel, and Cluster Computing Geometric algorithms Mesh generation Parallel algorithms Spatial sort Three dimensional |
title | Parallel geometric algorithms for multi-core computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20geometric%20algorithms%20for%20multi-core%20computers&rft.jtitle=Computational%20geometry%20:%20theory%20and%20applications&rft.au=Batista,%20Vicente%20H.F.&rft.date=2010-10-01&rft.volume=43&rft.issue=8&rft.spage=663&rft.epage=677&rft.pages=663-677&rft.issn=0925-7721&rft_id=info:doi/10.1016/j.comgeo.2010.04.008&rft_dat=%3Cproquest_hal_p%3E753668082%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753668082&rft_id=info:pmid/&rft_els_id=S0925772110000362&rfr_iscdi=true |