Mixed finite volume methods

We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1999-11, Vol.46 (9), p.1351-1366
Hauptverfasser: Thomas, J.-M., Trujillo, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1366
container_issue 9
container_start_page 1351
container_title International journal for numerical methods in engineering
container_volume 46
creator Thomas, J.-M.
Trujillo, D.
description We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0207(19991130)46:9<1351::AID-NME702>3.0.CO;2-0
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00343041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</originalsourceid><addsrcrecordid>eNqF0EtLw0AQwPFFFKyPT-ClR0VSZ_aVbBWhxqqVag--8TCkmw2utlaSqu23NyHai4KnhWXmB_NnrIPQQgC-t33Vi3s7CCYMgEO4jcYYRAE7UrfNAQqF7XandxxcXnRD4IeiBa14sM8DWGKNxdYya5SWCZSJcJWtFcUzAKIC0WBbF37m0mbmX_3UNT8mo_exa47d9GmSFhtsJUtGhdv8ftfZzUn3Oj4L-oPTXtzpB1YYwQM7tJhiyjPtuAuHKlLDzKHRMotkJiMloxS0AWtSG0mrIdVDK1UoQh45J7QV62y3dp-SEb3lfpzkc5okns46ffKvuU8IQEgBEj-wnH6op20-KYrcZYsVBKqaEVXNqLqequvppxlJTYaqZkRlM6qbkSCgeECcoLQfa_vTj9z8F_y_-yf7_VPqQa37YupmCz3JX0iXORTdXZ6SPg9v8fhe0ZH4AiN8jHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mixed finite volume methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thomas, J.-M. ; Trujillo, D.</creator><creatorcontrib>Thomas, J.-M. ; Trujillo, D.</creatorcontrib><description>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/(SICI)1097-0207(19991130)46:9&lt;1351::AID-NME702&gt;3.0.CO;2-0</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>a priori error estimates ; Computer Science ; finite volume ; generalized inf-sup conditions ; mixed finite element ; second-order elliptic problem ; vertex centered scheme</subject><ispartof>International journal for numerical methods in engineering, 1999-11, Vol.46 (9), p.1351-1366</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0207%2819991130%2946%3A9%3C1351%3A%3AAID-NME702%3E3.0.CO%3B2-0$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0207%2819991130%2946%3A9%3C1351%3A%3AAID-NME702%3E3.0.CO%3B2-0$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://inria.hal.science/inria-00343041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, J.-M.</creatorcontrib><creatorcontrib>Trujillo, D.</creatorcontrib><title>Mixed finite volume methods</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><subject>a priori error estimates</subject><subject>Computer Science</subject><subject>finite volume</subject><subject>generalized inf-sup conditions</subject><subject>mixed finite element</subject><subject>second-order elliptic problem</subject><subject>vertex centered scheme</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQwPFFFKyPT-ClR0VSZ_aVbBWhxqqVag--8TCkmw2utlaSqu23NyHai4KnhWXmB_NnrIPQQgC-t33Vi3s7CCYMgEO4jcYYRAE7UrfNAQqF7XandxxcXnRD4IeiBa14sM8DWGKNxdYya5SWCZSJcJWtFcUzAKIC0WBbF37m0mbmX_3UNT8mo_exa47d9GmSFhtsJUtGhdv8ftfZzUn3Oj4L-oPTXtzpB1YYwQM7tJhiyjPtuAuHKlLDzKHRMotkJiMloxS0AWtSG0mrIdVDK1UoQh45J7QV62y3dp-SEb3lfpzkc5okns46ffKvuU8IQEgBEj-wnH6op20-KYrcZYsVBKqaEVXNqLqequvppxlJTYaqZkRlM6qbkSCgeECcoLQfa_vTj9z8F_y_-yf7_VPqQa37YupmCz3JX0iXORTdXZ6SPg9v8fhe0ZH4AiN8jHQ</recordid><startdate>19991130</startdate><enddate>19991130</enddate><creator>Thomas, J.-M.</creator><creator>Trujillo, D.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>19991130</creationdate><title>Mixed finite volume methods</title><author>Thomas, J.-M. ; Trujillo, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>a priori error estimates</topic><topic>Computer Science</topic><topic>finite volume</topic><topic>generalized inf-sup conditions</topic><topic>mixed finite element</topic><topic>second-order elliptic problem</topic><topic>vertex centered scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, J.-M.</creatorcontrib><creatorcontrib>Trujillo, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, J.-M.</au><au>Trujillo, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite volume methods</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1999-11-30</date><risdate>1999</risdate><volume>46</volume><issue>9</issue><spage>1351</spage><epage>1366</epage><pages>1351-1366</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1097-0207(19991130)46:9&lt;1351::AID-NME702&gt;3.0.CO;2-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1999-11, Vol.46 (9), p.1351-1366
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_inria_00343041v1
source Wiley Online Library Journals Frontfile Complete
subjects a priori error estimates
Computer Science
finite volume
generalized inf-sup conditions
mixed finite element
second-order elliptic problem
vertex centered scheme
title Mixed finite volume methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20volume%20methods&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Thomas,%20J.-M.&rft.date=1999-11-30&rft.volume=46&rft.issue=9&rft.spage=1351&rft.epage=1366&rft.pages=1351-1366&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/(SICI)1097-0207(19991130)46:9%3C1351::AID-NME702%3E3.0.CO;2-0&rft_dat=%3Cwiley_hal_p%3ENME702%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true