Mixed finite volume methods
We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1999-11, Vol.46 (9), p.1351-1366 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1366 |
---|---|
container_issue | 9 |
container_start_page | 1351 |
container_title | International journal for numerical methods in engineering |
container_volume | 46 |
creator | Thomas, J.-M. Trujillo, D. |
description | We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1097-0207(19991130)46:9<1351::AID-NME702>3.0.CO;2-0 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00343041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</originalsourceid><addsrcrecordid>eNqF0EtLw0AQwPFFFKyPT-ClR0VSZ_aVbBWhxqqVag--8TCkmw2utlaSqu23NyHai4KnhWXmB_NnrIPQQgC-t33Vi3s7CCYMgEO4jcYYRAE7UrfNAQqF7XandxxcXnRD4IeiBa14sM8DWGKNxdYya5SWCZSJcJWtFcUzAKIC0WBbF37m0mbmX_3UNT8mo_exa47d9GmSFhtsJUtGhdv8ftfZzUn3Oj4L-oPTXtzpB1YYwQM7tJhiyjPtuAuHKlLDzKHRMotkJiMloxS0AWtSG0mrIdVDK1UoQh45J7QV62y3dp-SEb3lfpzkc5okns46ffKvuU8IQEgBEj-wnH6op20-KYrcZYsVBKqaEVXNqLqequvppxlJTYaqZkRlM6qbkSCgeECcoLQfa_vTj9z8F_y_-yf7_VPqQa37YupmCz3JX0iXORTdXZ6SPg9v8fhe0ZH4AiN8jHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mixed finite volume methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thomas, J.-M. ; Trujillo, D.</creator><creatorcontrib>Thomas, J.-M. ; Trujillo, D.</creatorcontrib><description>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/(SICI)1097-0207(19991130)46:9<1351::AID-NME702>3.0.CO;2-0</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>a priori error estimates ; Computer Science ; finite volume ; generalized inf-sup conditions ; mixed finite element ; second-order elliptic problem ; vertex centered scheme</subject><ispartof>International journal for numerical methods in engineering, 1999-11, Vol.46 (9), p.1351-1366</ispartof><rights>Copyright © 1999 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0207%2819991130%2946%3A9%3C1351%3A%3AAID-NME702%3E3.0.CO%3B2-0$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0207%2819991130%2946%3A9%3C1351%3A%3AAID-NME702%3E3.0.CO%3B2-0$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://inria.hal.science/inria-00343041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, J.-M.</creatorcontrib><creatorcontrib>Trujillo, D.</creatorcontrib><title>Mixed finite volume methods</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley & Sons, Ltd.</description><subject>a priori error estimates</subject><subject>Computer Science</subject><subject>finite volume</subject><subject>generalized inf-sup conditions</subject><subject>mixed finite element</subject><subject>second-order elliptic problem</subject><subject>vertex centered scheme</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQwPFFFKyPT-ClR0VSZ_aVbBWhxqqVag--8TCkmw2utlaSqu23NyHai4KnhWXmB_NnrIPQQgC-t33Vi3s7CCYMgEO4jcYYRAE7UrfNAQqF7XandxxcXnRD4IeiBa14sM8DWGKNxdYya5SWCZSJcJWtFcUzAKIC0WBbF37m0mbmX_3UNT8mo_exa47d9GmSFhtsJUtGhdv8ftfZzUn3Oj4L-oPTXtzpB1YYwQM7tJhiyjPtuAuHKlLDzKHRMotkJiMloxS0AWtSG0mrIdVDK1UoQh45J7QV62y3dp-SEb3lfpzkc5okns46ffKvuU8IQEgBEj-wnH6op20-KYrcZYsVBKqaEVXNqLqequvppxlJTYaqZkRlM6qbkSCgeECcoLQfa_vTj9z8F_y_-yf7_VPqQa37YupmCz3JX0iXORTdXZ6SPg9v8fhe0ZH4AiN8jHQ</recordid><startdate>19991130</startdate><enddate>19991130</enddate><creator>Thomas, J.-M.</creator><creator>Trujillo, D.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>19991130</creationdate><title>Mixed finite volume methods</title><author>Thomas, J.-M. ; Trujillo, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-cbc1d1d2f6e2e7b585bfe1964f84f48548d0690c9dc84c60d6bc4573728ee36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>a priori error estimates</topic><topic>Computer Science</topic><topic>finite volume</topic><topic>generalized inf-sup conditions</topic><topic>mixed finite element</topic><topic>second-order elliptic problem</topic><topic>vertex centered scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, J.-M.</creatorcontrib><creatorcontrib>Trujillo, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, J.-M.</au><au>Trujillo, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite volume methods</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1999-11-30</date><risdate>1999</risdate><volume>46</volume><issue>9</issue><spage>1351</spage><epage>1366</epage><pages>1351-1366</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present in this paper a new Finite Volume Methods for elliptic equation, based on a mixed primal‐dual formulation. In this approach the fluxes are introduced as unknowns of the problem and we use two dual meshes. This method is called ‘mixed finite volume method (MFV)’. We recall first the theory of generalized mixed formulation and then we develop error estimates in the case where two dual rectangular meshes or two dual triangular meshes are used. Finally, we present some numerical results and we calculate for each example the L2‐error relative to the primal and dual unknowns. Copyright © 1999 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/(SICI)1097-0207(19991130)46:9<1351::AID-NME702>3.0.CO;2-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1999-11, Vol.46 (9), p.1351-1366 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00343041v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | a priori error estimates Computer Science finite volume generalized inf-sup conditions mixed finite element second-order elliptic problem vertex centered scheme |
title | Mixed finite volume methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20volume%20methods&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Thomas,%20J.-M.&rft.date=1999-11-30&rft.volume=46&rft.issue=9&rft.spage=1351&rft.epage=1366&rft.pages=1351-1366&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/(SICI)1097-0207(19991130)46:9%3C1351::AID-NME702%3E3.0.CO;2-0&rft_dat=%3Cwiley_hal_p%3ENME702%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |