Impact of ocean observation systems on ocean analysis and seasonal forecasts

The relative merits of the Tropical Atmosphere-Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TAO/TRITON) and Pilot Research Moored Array in the Tropical Atlantic mooring networks, the Voluntary Observing Ship (VOS) expendable bathythermograph (XBT) network, and the Argo float network are evaluated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2007-02, Vol.135 (2), p.409-429
Hauptverfasser: VIDARD, A, ANDERSON, D. L. T, BALMASEDA, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative merits of the Tropical Atmosphere-Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TAO/TRITON) and Pilot Research Moored Array in the Tropical Atlantic mooring networks, the Voluntary Observing Ship (VOS) expendable bathythermograph (XBT) network, and the Argo float network are evaluated through their impact on ocean analyses and seasonal forecast skill. An ocean analysis is performed in which all available data are assimilated. In two additional experiments the moorings and the VOS datasets are withheld from the assimilation. To estimate the impact on seasonal forecast skill, the set of ocean analyses is then used to initialize a corresponding set of coupled ocean-atmosphere model forecasts. A further set of experiments is conducted to assess the impact of the more recent Argo array. A key parameter for seasonal forecast initialization is the depth of the thermocline in the tropical Pacific. This depth is quite similar in all of the experiments that involve data assimilation, but withdrawing the TAO data has a bigger effect than withdrawing XBT data, especially in the eastern half of the basin. The forecasts mainly indicate that the TAO/TRITON in situ temperature observations are essential to obtain optimum forecast skill. They are best combined with XBT, however, because this results in better predictions for the west Pacific. Furthermore, the XBTs play an important role in the North Atlantic. The ocean data assimilation performs less well in the tropical Atlantic. This may be partly a result of not having adequate observations of salinity. [PUBLICATION ABSTRACT]
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR3310.1