A trust region method based on interior point techniques for nonlinear programming

An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2000-11, Vol.89 (1), p.149-185
Hauptverfasser: BYRD, Richard H, GILBERT, Jean Charles, NOCEDAL, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 149
container_title Mathematical programming
container_volume 89
creator BYRD, Richard H
GILBERT, Jean Charles
NOCEDAL, Jorge
description An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.
doi_str_mv 10.1007/pl00011391
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00073794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_inria_00073794v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5e_AQBb0p1skmT9rgs_oOCInoOaZrsRtqkJl3Bb2-W1T3NzJvfG5iH0CWBWwIg7sYeAAihNTlCM8IoLxhn_BjNABZlUXICp-gspc8dRatqht6WeIrbNOFo1i54PJhpEzrcqmQ6nGfnJxNdiHgMucWT0RvvvrYmYZtFH3zvvFF5HcM6qmFwfn2OTqzqk7n4q3P08XD_vnoqmpfH59WyKTQDmApFzYK0C0Fb01ltiWCCtRx0zaEiWpcdL0tuBddCVIYBrbuOt4QprrLOREvn6GZ_d6N6OUY3qPgjg3LyadlI56NTMr8pqKjZN8n09Z7WMaQUjT1YCMhddvK1-c8uw1d7eFRJq95G5bVLB0cFQpSU_gKTWW2W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A trust region method based on interior point techniques for nonlinear programming</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</creator><creatorcontrib>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</creatorcontrib><description>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/pl00011391</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Computer Science ; Exact sciences and technology ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Other</subject><ispartof>Mathematical programming, 2000-11, Vol.89 (1), p.149-185</ispartof><rights>2001 INIST-CNRS</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</citedby><orcidid>0000-0002-0375-4663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=807753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00073794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BYRD, Richard H</creatorcontrib><creatorcontrib>GILBERT, Jean Charles</creatorcontrib><creatorcontrib>NOCEDAL, Jorge</creatorcontrib><title>A trust region method based on interior point techniques for nonlinear programming</title><title>Mathematical programming</title><description>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Other</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouK5e_AQBb0p1skmT9rgs_oOCInoOaZrsRtqkJl3Bb2-W1T3NzJvfG5iH0CWBWwIg7sYeAAihNTlCM8IoLxhn_BjNABZlUXICp-gspc8dRatqht6WeIrbNOFo1i54PJhpEzrcqmQ6nGfnJxNdiHgMucWT0RvvvrYmYZtFH3zvvFF5HcM6qmFwfn2OTqzqk7n4q3P08XD_vnoqmpfH59WyKTQDmApFzYK0C0Fb01ltiWCCtRx0zaEiWpcdL0tuBddCVIYBrbuOt4QprrLOREvn6GZ_d6N6OUY3qPgjg3LyadlI56NTMr8pqKjZN8n09Z7WMaQUjT1YCMhddvK1-c8uw1d7eFRJq95G5bVLB0cFQpSU_gKTWW2W</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>BYRD, Richard H</creator><creator>GILBERT, Jean Charles</creator><creator>NOCEDAL, Jorge</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0375-4663</orcidid></search><sort><creationdate>20001101</creationdate><title>A trust region method based on interior point techniques for nonlinear programming</title><author>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Other</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BYRD, Richard H</creatorcontrib><creatorcontrib>GILBERT, Jean Charles</creatorcontrib><creatorcontrib>NOCEDAL, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BYRD, Richard H</au><au>GILBERT, Jean Charles</au><au>NOCEDAL, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trust region method based on interior point techniques for nonlinear programming</atitle><jtitle>Mathematical programming</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>89</volume><issue>1</issue><spage>149</spage><epage>185</epage><pages>149-185</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/pl00011391</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0375-4663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2000-11, Vol.89 (1), p.149-185
issn 0025-5610
1436-4646
language eng
recordid cdi_hal_primary_oai_HAL_inria_00073794v1
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Applied sciences
Computer Science
Exact sciences and technology
Mathematical programming
Operational research and scientific management
Operational research. Management science
Other
title A trust region method based on interior point techniques for nonlinear programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trust%20region%20method%20based%20on%20interior%20point%20techniques%20for%20nonlinear%20programming&rft.jtitle=Mathematical%20programming&rft.au=BYRD,%20Richard%20H&rft.date=2000-11-01&rft.volume=89&rft.issue=1&rft.spage=149&rft.epage=185&rft.pages=149-185&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/pl00011391&rft_dat=%3Chal_cross%3Eoai_HAL_inria_00073794v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true