A trust region method based on interior point techniques for nonlinear programming
An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of b...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2000-11, Vol.89 (1), p.149-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 1 |
container_start_page | 149 |
container_title | Mathematical programming |
container_volume | 89 |
creator | BYRD, Richard H GILBERT, Jean Charles NOCEDAL, Jorge |
description | An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented. |
doi_str_mv | 10.1007/pl00011391 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00073794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_inria_00073794v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5e_AQBb0p1skmT9rgs_oOCInoOaZrsRtqkJl3Bb2-W1T3NzJvfG5iH0CWBWwIg7sYeAAihNTlCM8IoLxhn_BjNABZlUXICp-gspc8dRatqht6WeIrbNOFo1i54PJhpEzrcqmQ6nGfnJxNdiHgMucWT0RvvvrYmYZtFH3zvvFF5HcM6qmFwfn2OTqzqk7n4q3P08XD_vnoqmpfH59WyKTQDmApFzYK0C0Fb01ltiWCCtRx0zaEiWpcdL0tuBddCVIYBrbuOt4QprrLOREvn6GZ_d6N6OUY3qPgjg3LyadlI56NTMr8pqKjZN8n09Z7WMaQUjT1YCMhddvK1-c8uw1d7eFRJq95G5bVLB0cFQpSU_gKTWW2W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A trust region method based on interior point techniques for nonlinear programming</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</creator><creatorcontrib>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</creatorcontrib><description>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/pl00011391</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Computer Science ; Exact sciences and technology ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Other</subject><ispartof>Mathematical programming, 2000-11, Vol.89 (1), p.149-185</ispartof><rights>2001 INIST-CNRS</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</citedby><orcidid>0000-0002-0375-4663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=807753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00073794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BYRD, Richard H</creatorcontrib><creatorcontrib>GILBERT, Jean Charles</creatorcontrib><creatorcontrib>NOCEDAL, Jorge</creatorcontrib><title>A trust region method based on interior point techniques for nonlinear programming</title><title>Mathematical programming</title><description>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Other</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouK5e_AQBb0p1skmT9rgs_oOCInoOaZrsRtqkJl3Bb2-W1T3NzJvfG5iH0CWBWwIg7sYeAAihNTlCM8IoLxhn_BjNABZlUXICp-gspc8dRatqht6WeIrbNOFo1i54PJhpEzrcqmQ6nGfnJxNdiHgMucWT0RvvvrYmYZtFH3zvvFF5HcM6qmFwfn2OTqzqk7n4q3P08XD_vnoqmpfH59WyKTQDmApFzYK0C0Fb01ltiWCCtRx0zaEiWpcdL0tuBddCVIYBrbuOt4QprrLOREvn6GZ_d6N6OUY3qPgjg3LyadlI56NTMr8pqKjZN8n09Z7WMaQUjT1YCMhddvK1-c8uw1d7eFRJq95G5bVLB0cFQpSU_gKTWW2W</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>BYRD, Richard H</creator><creator>GILBERT, Jean Charles</creator><creator>NOCEDAL, Jorge</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0375-4663</orcidid></search><sort><creationdate>20001101</creationdate><title>A trust region method based on interior point techniques for nonlinear programming</title><author>BYRD, Richard H ; GILBERT, Jean Charles ; NOCEDAL, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a3e21b273bedfcf17474b60c96081cc5d6556f76c778e4039dd6b14a6a55647b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Other</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BYRD, Richard H</creatorcontrib><creatorcontrib>GILBERT, Jean Charles</creatorcontrib><creatorcontrib>NOCEDAL, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BYRD, Richard H</au><au>GILBERT, Jean Charles</au><au>NOCEDAL, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trust region method based on interior point techniques for nonlinear programming</atitle><jtitle>Mathematical programming</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>89</volume><issue>1</issue><spage>149</spage><epage>185</epage><pages>149-185</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>An algorithm for minimizing a nonlinear function subject to nonlinear equality and inequality constraints is described. It can be seen as an extension of primal interior point methods to non-convex optimization. The new algorithm applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. An analysis of the convergence properties of the new method is presented.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/pl00011391</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0375-4663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2000-11, Vol.89 (1), p.149-185 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00073794v1 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Computer Science Exact sciences and technology Mathematical programming Operational research and scientific management Operational research. Management science Other |
title | A trust region method based on interior point techniques for nonlinear programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trust%20region%20method%20based%20on%20interior%20point%20techniques%20for%20nonlinear%20programming&rft.jtitle=Mathematical%20programming&rft.au=BYRD,%20Richard%20H&rft.date=2000-11-01&rft.volume=89&rft.issue=1&rft.spage=149&rft.epage=185&rft.pages=149-185&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/pl00011391&rft_dat=%3Chal_cross%3Eoai_HAL_inria_00073794v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |