Using an Hebbian learning rule for multi-class SVM classifiers
Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processin...
Gespeichert in:
Veröffentlicht in: | Journal of computational neuroscience 2004-11, Vol.17 (3), p.271-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 3 |
container_start_page | 271 |
container_title | Journal of computational neuroscience |
container_volume | 17 |
creator | Viéville, Thierry Crahay, Sylvie |
description | Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processing architecture, described by models from Thorpe et al. Surprisingly enough, this experimental evidence is in coherence with algorithms derived from the statistical learning theory. More precisely, there is a double link: on one hand, the so-called Vapnik theory offers tools to evaluate and analyze the biological model performances and on the other hand, this model is an interesting front-end for algorithms derived from the Vapnik theory. The present contribution develops this idea, introducing a model derived from the statistical learning theory and using the biological model of Thorpe et al. We experiment its performances using a restrained sign language recognition experiment. This paper intends to be read by biologist as well as statistician, as a consequence basic material in both fields have been reviewed. |
doi_str_mv | 10.1023/B:JCNS.0000044873.20850.9c |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00000030v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66971234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-9c178825345fae1e3df13b1b9505a88ded6f9749d557f9f383614b964f6ff2d93</originalsourceid><addsrcrecordid>eNqFkUtP3DAQgC3UChbav1BFHHpBWTwePzlUghWwoG17oPRqOYkNRtkE7E0l_n2zDxWpF3wZa_TNjD0fIcdAp0AZnl6c3c5-3E3p-nCuFU4Z1YJOTb1HJiAUlnJMfiATapgpBQIekMOcn0ZcK6D75AAE14gGJ-TbfY7dQ-G6Yu6rKo6x9S5161waWl-EPhXLoV3Fsm5dzsXd7-_F5hZD9Cl_Ih-Da7P_vItH5P7q8tdsXi5-Xt_MzhdlzSWsSlOD0poJ5CI4Dx6bAFhBZQQVTuvGNzIYxU0jhAomoEYJvDKSBxkCawwekZNt30fX2ucUly692t5FOz9f2Nil6OxmHRTpHxjpr1v6OfUvg88ru4y59m3rOt8P2UppFDDk74KgmOGCqhE8_g986ofUjV-2DBTnUgg2QmdbqE59zsmHfy8Fatfm7IVdm7Nv5uzGnDX1WPxlN2Golr55K92pwr8lrZIn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217446552</pqid></control><display><type>article</type><title>Using an Hebbian learning rule for multi-class SVM classifiers</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Viéville, Thierry ; Crahay, Sylvie</creator><creatorcontrib>Viéville, Thierry ; Crahay, Sylvie</creatorcontrib><description>Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processing architecture, described by models from Thorpe et al. Surprisingly enough, this experimental evidence is in coherence with algorithms derived from the statistical learning theory. More precisely, there is a double link: on one hand, the so-called Vapnik theory offers tools to evaluate and analyze the biological model performances and on the other hand, this model is an interesting front-end for algorithms derived from the Vapnik theory. The present contribution develops this idea, introducing a model derived from the statistical learning theory and using the biological model of Thorpe et al. We experiment its performances using a restrained sign language recognition experiment. This paper intends to be read by biologist as well as statistician, as a consequence basic material in both fields have been reviewed.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1023/B:JCNS.0000044873.20850.9c</identifier><identifier>PMID: 15483393</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Adaptation and Self-Organizing Systems ; Algorithms ; Documentation ; Humans ; Learning - physiology ; Life Sciences ; Models, Neurological ; Models, Psychological ; Nonlinear Sciences ; Other ; Reaction Time - physiology ; Recognition (Psychology) - physiology ; Sign Language ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Journal of computational neuroscience, 2004-11, Vol.17 (3), p.271-287</ispartof><rights>Copyright (c) 2004 Kluwer Academic Publishers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-9c178825345fae1e3df13b1b9505a88ded6f9749d557f9f383614b964f6ff2d93</citedby><orcidid>0000-0003-1031-3572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15483393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00000030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Viéville, Thierry</creatorcontrib><creatorcontrib>Crahay, Sylvie</creatorcontrib><title>Using an Hebbian learning rule for multi-class SVM classifiers</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><description>Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processing architecture, described by models from Thorpe et al. Surprisingly enough, this experimental evidence is in coherence with algorithms derived from the statistical learning theory. More precisely, there is a double link: on one hand, the so-called Vapnik theory offers tools to evaluate and analyze the biological model performances and on the other hand, this model is an interesting front-end for algorithms derived from the Vapnik theory. The present contribution develops this idea, introducing a model derived from the statistical learning theory and using the biological model of Thorpe et al. We experiment its performances using a restrained sign language recognition experiment. This paper intends to be read by biologist as well as statistician, as a consequence basic material in both fields have been reviewed.</description><subject>Adaptation and Self-Organizing Systems</subject><subject>Algorithms</subject><subject>Documentation</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Life Sciences</subject><subject>Models, Neurological</subject><subject>Models, Psychological</subject><subject>Nonlinear Sciences</subject><subject>Other</subject><subject>Reaction Time - physiology</subject><subject>Recognition (Psychology) - physiology</subject><subject>Sign Language</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtP3DAQgC3UChbav1BFHHpBWTwePzlUghWwoG17oPRqOYkNRtkE7E0l_n2zDxWpF3wZa_TNjD0fIcdAp0AZnl6c3c5-3E3p-nCuFU4Z1YJOTb1HJiAUlnJMfiATapgpBQIekMOcn0ZcK6D75AAE14gGJ-TbfY7dQ-G6Yu6rKo6x9S5161waWl-EPhXLoV3Fsm5dzsXd7-_F5hZD9Cl_Ih-Da7P_vItH5P7q8tdsXi5-Xt_MzhdlzSWsSlOD0poJ5CI4Dx6bAFhBZQQVTuvGNzIYxU0jhAomoEYJvDKSBxkCawwekZNt30fX2ucUly692t5FOz9f2Nil6OxmHRTpHxjpr1v6OfUvg88ru4y59m3rOt8P2UppFDDk74KgmOGCqhE8_g986ofUjV-2DBTnUgg2QmdbqE59zsmHfy8Fatfm7IVdm7Nv5uzGnDX1WPxlN2Golr55K92pwr8lrZIn</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Viéville, Thierry</creator><creator>Crahay, Sylvie</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1031-3572</orcidid></search><sort><creationdate>20041101</creationdate><title>Using an Hebbian learning rule for multi-class SVM classifiers</title><author>Viéville, Thierry ; Crahay, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-9c178825345fae1e3df13b1b9505a88ded6f9749d557f9f383614b964f6ff2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptation and Self-Organizing Systems</topic><topic>Algorithms</topic><topic>Documentation</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Life Sciences</topic><topic>Models, Neurological</topic><topic>Models, Psychological</topic><topic>Nonlinear Sciences</topic><topic>Other</topic><topic>Reaction Time - physiology</topic><topic>Recognition (Psychology) - physiology</topic><topic>Sign Language</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viéville, Thierry</creatorcontrib><creatorcontrib>Crahay, Sylvie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viéville, Thierry</au><au>Crahay, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using an Hebbian learning rule for multi-class SVM classifiers</atitle><jtitle>Journal of computational neuroscience</jtitle><addtitle>J Comput Neurosci</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>17</volume><issue>3</issue><spage>271</spage><epage>287</epage><pages>271-287</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processing architecture, described by models from Thorpe et al. Surprisingly enough, this experimental evidence is in coherence with algorithms derived from the statistical learning theory. More precisely, there is a double link: on one hand, the so-called Vapnik theory offers tools to evaluate and analyze the biological model performances and on the other hand, this model is an interesting front-end for algorithms derived from the Vapnik theory. The present contribution develops this idea, introducing a model derived from the statistical learning theory and using the biological model of Thorpe et al. We experiment its performances using a restrained sign language recognition experiment. This paper intends to be read by biologist as well as statistician, as a consequence basic material in both fields have been reviewed.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15483393</pmid><doi>10.1023/B:JCNS.0000044873.20850.9c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1031-3572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5313 |
ispartof | Journal of computational neuroscience, 2004-11, Vol.17 (3), p.271-287 |
issn | 0929-5313 1573-6873 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00000030v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adaptation and Self-Organizing Systems Algorithms Documentation Humans Learning - physiology Life Sciences Models, Neurological Models, Psychological Nonlinear Sciences Other Reaction Time - physiology Recognition (Psychology) - physiology Sign Language Visual Cortex - physiology Visual Pathways - physiology |
title | Using an Hebbian learning rule for multi-class SVM classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20an%20Hebbian%20learning%20rule%20for%20multi-class%20SVM%20classifiers&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Vi%C3%A9ville,%20Thierry&rft.date=2004-11-01&rft.volume=17&rft.issue=3&rft.spage=271&rft.epage=287&rft.pages=271-287&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1023/B:JCNS.0000044873.20850.9c&rft_dat=%3Cproquest_hal_p%3E66971234%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217446552&rft_id=info:pmid/15483393&rfr_iscdi=true |