Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy

In recent years, evaluating the robustness of environmental models results has become essential in order to effectively support decision makers to define suitable emission control strategies. This evaluation is performed in literature through uncertainty and sensitivity analyses. Therefore, the appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & policy 2016-11, Vol.65, p.39-47
Hauptverfasser: Carnevale, C., Douros, J., Finzi, G., Graff, A., Guariso, G., Nahorski, Z., Pisoni, E., Ponche, J-L., Real, E., Turrini, E., Vlachokostas, Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 39
container_title Environmental science & policy
container_volume 65
creator Carnevale, C.
Douros, J.
Finzi, G.
Graff, A.
Guariso, G.
Nahorski, Z.
Pisoni, E.
Ponche, J-L.
Real, E.
Turrini, E.
Vlachokostas, Ch
description In recent years, evaluating the robustness of environmental models results has become essential in order to effectively support decision makers to define suitable emission control strategies. This evaluation is performed in literature through uncertainty and sensitivity analyses. Therefore, the application of such methodologies to air quality Integrated Assessment Models (IAMs) is extremely challenging. In fact, in this case uncertainty and sensitivity analyses should be assessed not only for each single component of the system, but also for the overall IAM. In the paper, an attempt is made to extend and systematize the information available on uncertainty/sensitivity analysis, at first considering environmental models in general, and then focusing on air quality IAMs. The study aims to offer a tentative framework addressed to modelers and decision makers in the implementation of IAM and evaluation of its results. The framework has been tested on Lombardy region (Northern Italy). The results show how the uncertainty on Drivers of emissions propagates on the whole modelling chain characterizing an integrated assessment study.
doi_str_mv 10.1016/j.envsci.2016.02.001
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ineris_01854114v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1462901116300193</els_id><sourcerecordid>oai_HAL_ineris_01854114v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-cf47c0b8ae99a0eb822c925776ca39756298f2f87aedf11d51a97da7997350913</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKtv4CEP4K5J9k8SD0IpagtFL_bgKUyzWZuyZmuSFvbtTVnx6GlmmO83MB9Ct5TklND6fpcbdwza5ixNOWE5IfQMTajgRVaXtD5PfVmzTBJKL9FVCDtCCBe1nKCPtdPGR7AuDtgcoTtAtL3D1mGwHn8foLNps-_AOes-cWO0DQkIDxiwhmBwiIdmwG3v8Wvv49Z4h5cRuuEaXbTQBXPzW6do_fz0Pl9kq7eX5Xy2ynQhZMx0W3JNNgKMlEDMRjCmJas4rzUUklc1k6JlreBgmpbSpqIgeQNcSl5URNJiiu7Gu1vo1N7bL_CD6sGqxWylrDPeBkWoqEpKy-MJL0dc-z4Eb9q_DCXqZFPt1GhTnWwqwlSymWKPY8ykV47WeJUIk9w11hsdVdPb_w_8ACPdgFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy</title><source>Elsevier ScienceDirect Journals</source><creator>Carnevale, C. ; Douros, J. ; Finzi, G. ; Graff, A. ; Guariso, G. ; Nahorski, Z. ; Pisoni, E. ; Ponche, J-L. ; Real, E. ; Turrini, E. ; Vlachokostas, Ch</creator><creatorcontrib>Carnevale, C. ; Douros, J. ; Finzi, G. ; Graff, A. ; Guariso, G. ; Nahorski, Z. ; Pisoni, E. ; Ponche, J-L. ; Real, E. ; Turrini, E. ; Vlachokostas, Ch</creatorcontrib><description>In recent years, evaluating the robustness of environmental models results has become essential in order to effectively support decision makers to define suitable emission control strategies. This evaluation is performed in literature through uncertainty and sensitivity analyses. Therefore, the application of such methodologies to air quality Integrated Assessment Models (IAMs) is extremely challenging. In fact, in this case uncertainty and sensitivity analyses should be assessed not only for each single component of the system, but also for the overall IAM. In the paper, an attempt is made to extend and systematize the information available on uncertainty/sensitivity analysis, at first considering environmental models in general, and then focusing on air quality IAMs. The study aims to offer a tentative framework addressed to modelers and decision makers in the implementation of IAM and evaluation of its results. The framework has been tested on Lombardy region (Northern Italy). The results show how the uncertainty on Drivers of emissions propagates on the whole modelling chain characterizing an integrated assessment study.</description><identifier>ISSN: 1462-9011</identifier><identifier>EISSN: 1873-6416</identifier><identifier>DOI: 10.1016/j.envsci.2016.02.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Air quality ; Analysis ; Environmental Sciences ; Integrated assessment models ; Sensitivity ; Uncertainty analysis</subject><ispartof>Environmental science &amp; policy, 2016-11, Vol.65, p.39-47</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-cf47c0b8ae99a0eb822c925776ca39756298f2f87aedf11d51a97da7997350913</citedby><cites>FETCH-LOGICAL-c389t-cf47c0b8ae99a0eb822c925776ca39756298f2f87aedf11d51a97da7997350913</cites><orcidid>0000-0002-0449-7558 ; 0000-0002-1991-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1462901116300193$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-01854114$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carnevale, C.</creatorcontrib><creatorcontrib>Douros, J.</creatorcontrib><creatorcontrib>Finzi, G.</creatorcontrib><creatorcontrib>Graff, A.</creatorcontrib><creatorcontrib>Guariso, G.</creatorcontrib><creatorcontrib>Nahorski, Z.</creatorcontrib><creatorcontrib>Pisoni, E.</creatorcontrib><creatorcontrib>Ponche, J-L.</creatorcontrib><creatorcontrib>Real, E.</creatorcontrib><creatorcontrib>Turrini, E.</creatorcontrib><creatorcontrib>Vlachokostas, Ch</creatorcontrib><title>Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy</title><title>Environmental science &amp; policy</title><description>In recent years, evaluating the robustness of environmental models results has become essential in order to effectively support decision makers to define suitable emission control strategies. This evaluation is performed in literature through uncertainty and sensitivity analyses. Therefore, the application of such methodologies to air quality Integrated Assessment Models (IAMs) is extremely challenging. In fact, in this case uncertainty and sensitivity analyses should be assessed not only for each single component of the system, but also for the overall IAM. In the paper, an attempt is made to extend and systematize the information available on uncertainty/sensitivity analysis, at first considering environmental models in general, and then focusing on air quality IAMs. The study aims to offer a tentative framework addressed to modelers and decision makers in the implementation of IAM and evaluation of its results. The framework has been tested on Lombardy region (Northern Italy). The results show how the uncertainty on Drivers of emissions propagates on the whole modelling chain characterizing an integrated assessment study.</description><subject>Air quality</subject><subject>Analysis</subject><subject>Environmental Sciences</subject><subject>Integrated assessment models</subject><subject>Sensitivity</subject><subject>Uncertainty analysis</subject><issn>1462-9011</issn><issn>1873-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKtv4CEP4K5J9k8SD0IpagtFL_bgKUyzWZuyZmuSFvbtTVnx6GlmmO83MB9Ct5TklND6fpcbdwza5ixNOWE5IfQMTajgRVaXtD5PfVmzTBJKL9FVCDtCCBe1nKCPtdPGR7AuDtgcoTtAtL3D1mGwHn8foLNps-_AOes-cWO0DQkIDxiwhmBwiIdmwG3v8Wvv49Z4h5cRuuEaXbTQBXPzW6do_fz0Pl9kq7eX5Xy2ynQhZMx0W3JNNgKMlEDMRjCmJas4rzUUklc1k6JlreBgmpbSpqIgeQNcSl5URNJiiu7Gu1vo1N7bL_CD6sGqxWylrDPeBkWoqEpKy-MJL0dc-z4Eb9q_DCXqZFPt1GhTnWwqwlSymWKPY8ykV47WeJUIk9w11hsdVdPb_w_8ACPdgFI</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Carnevale, C.</creator><creator>Douros, J.</creator><creator>Finzi, G.</creator><creator>Graff, A.</creator><creator>Guariso, G.</creator><creator>Nahorski, Z.</creator><creator>Pisoni, E.</creator><creator>Ponche, J-L.</creator><creator>Real, E.</creator><creator>Turrini, E.</creator><creator>Vlachokostas, Ch</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0449-7558</orcidid><orcidid>https://orcid.org/0000-0002-1991-6372</orcidid></search><sort><creationdate>20161101</creationdate><title>Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy</title><author>Carnevale, C. ; Douros, J. ; Finzi, G. ; Graff, A. ; Guariso, G. ; Nahorski, Z. ; Pisoni, E. ; Ponche, J-L. ; Real, E. ; Turrini, E. ; Vlachokostas, Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-cf47c0b8ae99a0eb822c925776ca39756298f2f87aedf11d51a97da7997350913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air quality</topic><topic>Analysis</topic><topic>Environmental Sciences</topic><topic>Integrated assessment models</topic><topic>Sensitivity</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnevale, C.</creatorcontrib><creatorcontrib>Douros, J.</creatorcontrib><creatorcontrib>Finzi, G.</creatorcontrib><creatorcontrib>Graff, A.</creatorcontrib><creatorcontrib>Guariso, G.</creatorcontrib><creatorcontrib>Nahorski, Z.</creatorcontrib><creatorcontrib>Pisoni, E.</creatorcontrib><creatorcontrib>Ponche, J-L.</creatorcontrib><creatorcontrib>Real, E.</creatorcontrib><creatorcontrib>Turrini, E.</creatorcontrib><creatorcontrib>Vlachokostas, Ch</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science &amp; policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnevale, C.</au><au>Douros, J.</au><au>Finzi, G.</au><au>Graff, A.</au><au>Guariso, G.</au><au>Nahorski, Z.</au><au>Pisoni, E.</au><au>Ponche, J-L.</au><au>Real, E.</au><au>Turrini, E.</au><au>Vlachokostas, Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy</atitle><jtitle>Environmental science &amp; policy</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>65</volume><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>1462-9011</issn><eissn>1873-6416</eissn><abstract>In recent years, evaluating the robustness of environmental models results has become essential in order to effectively support decision makers to define suitable emission control strategies. This evaluation is performed in literature through uncertainty and sensitivity analyses. Therefore, the application of such methodologies to air quality Integrated Assessment Models (IAMs) is extremely challenging. In fact, in this case uncertainty and sensitivity analyses should be assessed not only for each single component of the system, but also for the overall IAM. In the paper, an attempt is made to extend and systematize the information available on uncertainty/sensitivity analysis, at first considering environmental models in general, and then focusing on air quality IAMs. The study aims to offer a tentative framework addressed to modelers and decision makers in the implementation of IAM and evaluation of its results. The framework has been tested on Lombardy region (Northern Italy). The results show how the uncertainty on Drivers of emissions propagates on the whole modelling chain characterizing an integrated assessment study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsci.2016.02.001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0449-7558</orcidid><orcidid>https://orcid.org/0000-0002-1991-6372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-9011
ispartof Environmental science & policy, 2016-11, Vol.65, p.39-47
issn 1462-9011
1873-6416
language eng
recordid cdi_hal_primary_oai_HAL_ineris_01854114v1
source Elsevier ScienceDirect Journals
subjects Air quality
Analysis
Environmental Sciences
Integrated assessment models
Sensitivity
Uncertainty analysis
title Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20evaluation%20in%20air%20quality%20planning%20decisions:%20a%20case%20study%20for%20Northern%20Italy&rft.jtitle=Environmental%20science%20&%20policy&rft.au=Carnevale,%20C.&rft.date=2016-11-01&rft.volume=65&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=1462-9011&rft.eissn=1873-6416&rft_id=info:doi/10.1016/j.envsci.2016.02.001&rft_dat=%3Chal_cross%3Eoai_HAL_ineris_01854114v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1462901116300193&rfr_iscdi=true