Arterial Spin Labeling to Predict Brain Tumor Grading in Children: Correlations between Histopathologic Vascular Density and Perfusion MR Imaging
Purpose To compare arterial spin labeling (ASL) data between low- and high-grade brain tumors in children to establish a cutoff to distinguish low- from high-grade neoplasms and to assess potential correlations between cerebral blood flow (CBF) and quantitative histologic microvascular data. Materia...
Gespeichert in:
Veröffentlicht in: | Radiology 2016-11, Vol.281 (2), p.553-566 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose To compare arterial spin labeling (ASL) data between low- and high-grade brain tumors in children to establish a cutoff to distinguish low- from high-grade neoplasms and to assess potential correlations between cerebral blood flow (CBF) and quantitative histologic microvascular data. Materials and Methods Approval was obtained from the regional review board. ASL data obtained in 129 children between 2011 and 2015 were retrospectively analyzed. CBF and relative CBF in the most perfused area of each neoplasm and contrast enhancement were quantified with a semiquantitative ratio. The correlation between CBF and microvascular density was analyzed in specimens stained with anti-CD34. Results were controlled in two validation cohorts with 1.5- and 3.0-T magnetic resonance (MR) imaging. Results Mean CBF was significantly higher for high-grade than for low-grade hemispheric (116 mL/min/100 g [interquartile range {IQR}, 73-131 mL/min/100 g] vs 29 mL/min/100 g [IQR, 23-35 29 mL/min/100 g], P < .001), thalamic (87 mL/min/100 g [IQR, 73-100 mL/min/100 g] vs 36 mL/min/100 g [IQR, 30-40 mL/min/100 g], P = .016), and posterior fossa (59 mL/min/100 g [IQR, 45-91 mL/min/100 g] vs 33 mL/min/100 g [IQR, 25-40 mL/min/100 g], P < .001) tumors. With a cutoff of 50 mL/min/100 g, sensitivity and specificity were 90% (95% confidence interval [CI]: 68, 100) and 93% (95% CI: 66, 100), respectively, for hemispheric tumors; 100% (95% CI: 48, 100) and 80% (95% CI: 28, 100), respectively, for thalamic tumors; and 65% (95% CI: 51, 78) and 94% (95% CI: 80, 99), respectively, for posterior fossa tumors. In posterior fossa tumors, additional use of the CBF-to-contrast enhancement ratio yielded sensitivity and specificity of 96% (95% CI: 87, 100) and 97% (95% CI: 84, 100), respectively. Use of a simple algorithm based on these values yielded an accuracy of 93% (95% CI: 87, 97). Validation sets yielded similar results, with grading accuracy of 88% (95% CI: 62, 98) with 1.5-T MR imaging and 77% (95% CI: 46, 95) with 3.0-T MR imaging. CBF was strongly correlated with microvascular density (R = 0.66, P < .001). Conclusion High-grade pediatric brain tumors display higher CBF than do low-grade tumors, and they may be accurately graded by using these values. CBF is correlated with tumor microvascular density.
RSNA, 2016 Online supplemental material is available for this article. |
---|---|
ISSN: | 0033-8419 1527-1315 |
DOI: | 10.1148/radiol.2016152228 |