A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors

Magnetic hyperthermia is a promising new treatment, allowing to locally induce a temperature increase in cancer tumors that leads to a lethal effect. For this, magnetic nanoparticles are introduced in tumors and exposed to an alternative magnetic field which produces the wanted temperature rise. Whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2018-02, Vol.114 (3), p.361a-361a
Hauptverfasser: Alphandery, Edouard, Abi Haidar, Darine, Seksek, Olivier, Thoreau, Maxime, Trautmann, Alain, Bercovici, Nadege, Gazeau, Florence, Guyot, Francois, Chebbi, Imène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361a
container_issue 3
container_start_page 361a
container_title Biophysical journal
container_volume 114
creator Alphandery, Edouard
Abi Haidar, Darine
Seksek, Olivier
Thoreau, Maxime
Trautmann, Alain
Bercovici, Nadege
Gazeau, Florence
Guyot, Francois
Chebbi, Imène
description Magnetic hyperthermia is a promising new treatment, allowing to locally induce a temperature increase in cancer tumors that leads to a lethal effect. For this, magnetic nanoparticles are introduced in tumors and exposed to an alternative magnetic field which produces the wanted temperature rise. While the final biological effect can be assessed by many techniques, the in situ temperature changes are often difficult to evaluate otherwise than with a regular thermometer. This fairly crude procedure does not allow to finely report changes at the tissue or cell level. In this context, we report here an original method based on a chemical nanoprobe designed to follow temperatures changes during hyperthermia therapy. In our work, AMB-1 magnetotactic bacteria produce the magnetic nanoparticles (magnetosomes), since we have already shown that this type of nanoparticles had a much better magnetic activity than chemically synthesized particles (Alphandery et al. ACS Nano, 2011, 5:6279). Interestingly, by introducing rhodamine B in an optimized growth medium for these bacteria, we were able to extract fluorescent magnetosomes with new characteristics. Indeed, keeping their typical magnetic activity useful for cancer therapy, they would also display a temperature-dependence fluorescence allowing to perform local measurements at a microscopic level in biological tissues. The molecular mechanism would be discussed, as well as results obtained with different cell types (RG2, TC1-GFP, C57NL/6 peritoneal macrophages, U87-MG) and tissues (RG2-implanted rat brain).
doi_str_mv 10.1016/j.bpj.2017.11.2006
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_02025007v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517332381</els_id><sourcerecordid>oai_HAL_in2p3_02025007v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2256-ed203246e0f7fc003c06a718b18522ad2568c49796f3d13f4cb68715fa7d25f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKfcZetM9rPgpVRrhaIH9x7S7KRN6W6WZLfgvzel4tHTwMz7vDAPYw8IUwQsnvbTTb-fCsByihgnFBdsgnkmEoCquGQTiKskzWb5NbsJYQ-AIgecsH7Ol4fReQqauoF_qM713m2IG-f5sCP-QgPpwbqOO8Ntx7_sMPKa2p68GkZPfLFT3ZYCb0Zvuy1ffcdLBH1rFa89qaE9FUe4Hlvnwx27MuoQ6P533rJ6-VovVsn68-19MV8nWoi8SKgRkIqsIDCl0QCphkKVWG2wyoVQTcxUOpuVs8KkDaYm05uiKjE3qow3k96yx3PtTh1k722r_Ld0ysrVfC1tJ_pUgoDoAMojxrQ4p7V3IXgyfwiCPAmWexkFy5NgiShPgiP0fIYovnG05GXQljpNjfVRmWyc_Q__AfVzg2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Alphandery, Edouard ; Abi Haidar, Darine ; Seksek, Olivier ; Thoreau, Maxime ; Trautmann, Alain ; Bercovici, Nadege ; Gazeau, Florence ; Guyot, Francois ; Chebbi, Imène</creator><creatorcontrib>Alphandery, Edouard ; Abi Haidar, Darine ; Seksek, Olivier ; Thoreau, Maxime ; Trautmann, Alain ; Bercovici, Nadege ; Gazeau, Florence ; Guyot, Francois ; Chebbi, Imène</creatorcontrib><description>Magnetic hyperthermia is a promising new treatment, allowing to locally induce a temperature increase in cancer tumors that leads to a lethal effect. For this, magnetic nanoparticles are introduced in tumors and exposed to an alternative magnetic field which produces the wanted temperature rise. While the final biological effect can be assessed by many techniques, the in situ temperature changes are often difficult to evaluate otherwise than with a regular thermometer. This fairly crude procedure does not allow to finely report changes at the tissue or cell level. In this context, we report here an original method based on a chemical nanoprobe designed to follow temperatures changes during hyperthermia therapy. In our work, AMB-1 magnetotactic bacteria produce the magnetic nanoparticles (magnetosomes), since we have already shown that this type of nanoparticles had a much better magnetic activity than chemically synthesized particles (Alphandery et al. ACS Nano, 2011, 5:6279). Interestingly, by introducing rhodamine B in an optimized growth medium for these bacteria, we were able to extract fluorescent magnetosomes with new characteristics. Indeed, keeping their typical magnetic activity useful for cancer therapy, they would also display a temperature-dependence fluorescence allowing to perform local measurements at a microscopic level in biological tissues. The molecular mechanism would be discussed, as well as results obtained with different cell types (RG2, TC1-GFP, C57NL/6 peritoneal macrophages, U87-MG) and tissues (RG2-implanted rat brain).</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.11.2006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Nuclear Experiment ; Physics</subject><ispartof>Biophysical journal, 2018-02, Vol.114 (3), p.361a-361a</ispartof><rights>2017</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2256-ed203246e0f7fc003c06a718b18522ad2568c49796f3d13f4cb68715fa7d25f3</citedby><orcidid>0000-0002-8449-0590 ; 0000-0003-4622-2218 ; 0000-0002-3053-3022 ; 0000-0001-7514-420X ; 0000-0003-1740-4979 ; 0000-0002-2952-2270 ; 0000-0002-6482-3597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349517332381$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-02025007$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alphandery, Edouard</creatorcontrib><creatorcontrib>Abi Haidar, Darine</creatorcontrib><creatorcontrib>Seksek, Olivier</creatorcontrib><creatorcontrib>Thoreau, Maxime</creatorcontrib><creatorcontrib>Trautmann, Alain</creatorcontrib><creatorcontrib>Bercovici, Nadege</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Guyot, Francois</creatorcontrib><creatorcontrib>Chebbi, Imène</creatorcontrib><title>A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors</title><title>Biophysical journal</title><description>Magnetic hyperthermia is a promising new treatment, allowing to locally induce a temperature increase in cancer tumors that leads to a lethal effect. For this, magnetic nanoparticles are introduced in tumors and exposed to an alternative magnetic field which produces the wanted temperature rise. While the final biological effect can be assessed by many techniques, the in situ temperature changes are often difficult to evaluate otherwise than with a regular thermometer. This fairly crude procedure does not allow to finely report changes at the tissue or cell level. In this context, we report here an original method based on a chemical nanoprobe designed to follow temperatures changes during hyperthermia therapy. In our work, AMB-1 magnetotactic bacteria produce the magnetic nanoparticles (magnetosomes), since we have already shown that this type of nanoparticles had a much better magnetic activity than chemically synthesized particles (Alphandery et al. ACS Nano, 2011, 5:6279). Interestingly, by introducing rhodamine B in an optimized growth medium for these bacteria, we were able to extract fluorescent magnetosomes with new characteristics. Indeed, keeping their typical magnetic activity useful for cancer therapy, they would also display a temperature-dependence fluorescence allowing to perform local measurements at a microscopic level in biological tissues. The molecular mechanism would be discussed, as well as results obtained with different cell types (RG2, TC1-GFP, C57NL/6 peritoneal macrophages, U87-MG) and tissues (RG2-implanted rat brain).</description><subject>Nuclear Experiment</subject><subject>Physics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKfcZetM9rPgpVRrhaIH9x7S7KRN6W6WZLfgvzel4tHTwMz7vDAPYw8IUwQsnvbTTb-fCsByihgnFBdsgnkmEoCquGQTiKskzWb5NbsJYQ-AIgecsH7Ol4fReQqauoF_qM713m2IG-f5sCP-QgPpwbqOO8Ntx7_sMPKa2p68GkZPfLFT3ZYCb0Zvuy1ffcdLBH1rFa89qaE9FUe4Hlvnwx27MuoQ6P533rJ6-VovVsn68-19MV8nWoi8SKgRkIqsIDCl0QCphkKVWG2wyoVQTcxUOpuVs8KkDaYm05uiKjE3qow3k96yx3PtTh1k722r_Ld0ysrVfC1tJ_pUgoDoAMojxrQ4p7V3IXgyfwiCPAmWexkFy5NgiShPgiP0fIYovnG05GXQljpNjfVRmWyc_Q__AfVzg2A</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Alphandery, Edouard</creator><creator>Abi Haidar, Darine</creator><creator>Seksek, Olivier</creator><creator>Thoreau, Maxime</creator><creator>Trautmann, Alain</creator><creator>Bercovici, Nadege</creator><creator>Gazeau, Florence</creator><creator>Guyot, Francois</creator><creator>Chebbi, Imène</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8449-0590</orcidid><orcidid>https://orcid.org/0000-0003-4622-2218</orcidid><orcidid>https://orcid.org/0000-0002-3053-3022</orcidid><orcidid>https://orcid.org/0000-0001-7514-420X</orcidid><orcidid>https://orcid.org/0000-0003-1740-4979</orcidid><orcidid>https://orcid.org/0000-0002-2952-2270</orcidid><orcidid>https://orcid.org/0000-0002-6482-3597</orcidid></search><sort><creationdate>201802</creationdate><title>A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors</title><author>Alphandery, Edouard ; Abi Haidar, Darine ; Seksek, Olivier ; Thoreau, Maxime ; Trautmann, Alain ; Bercovici, Nadege ; Gazeau, Florence ; Guyot, Francois ; Chebbi, Imène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2256-ed203246e0f7fc003c06a718b18522ad2568c49796f3d13f4cb68715fa7d25f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Nuclear Experiment</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alphandery, Edouard</creatorcontrib><creatorcontrib>Abi Haidar, Darine</creatorcontrib><creatorcontrib>Seksek, Olivier</creatorcontrib><creatorcontrib>Thoreau, Maxime</creatorcontrib><creatorcontrib>Trautmann, Alain</creatorcontrib><creatorcontrib>Bercovici, Nadege</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Guyot, Francois</creatorcontrib><creatorcontrib>Chebbi, Imène</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alphandery, Edouard</au><au>Abi Haidar, Darine</au><au>Seksek, Olivier</au><au>Thoreau, Maxime</au><au>Trautmann, Alain</au><au>Bercovici, Nadege</au><au>Gazeau, Florence</au><au>Guyot, Francois</au><au>Chebbi, Imène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors</atitle><jtitle>Biophysical journal</jtitle><date>2018-02</date><risdate>2018</risdate><volume>114</volume><issue>3</issue><spage>361a</spage><epage>361a</epage><pages>361a-361a</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Magnetic hyperthermia is a promising new treatment, allowing to locally induce a temperature increase in cancer tumors that leads to a lethal effect. For this, magnetic nanoparticles are introduced in tumors and exposed to an alternative magnetic field which produces the wanted temperature rise. While the final biological effect can be assessed by many techniques, the in situ temperature changes are often difficult to evaluate otherwise than with a regular thermometer. This fairly crude procedure does not allow to finely report changes at the tissue or cell level. In this context, we report here an original method based on a chemical nanoprobe designed to follow temperatures changes during hyperthermia therapy. In our work, AMB-1 magnetotactic bacteria produce the magnetic nanoparticles (magnetosomes), since we have already shown that this type of nanoparticles had a much better magnetic activity than chemically synthesized particles (Alphandery et al. ACS Nano, 2011, 5:6279). Interestingly, by introducing rhodamine B in an optimized growth medium for these bacteria, we were able to extract fluorescent magnetosomes with new characteristics. Indeed, keeping their typical magnetic activity useful for cancer therapy, they would also display a temperature-dependence fluorescence allowing to perform local measurements at a microscopic level in biological tissues. The molecular mechanism would be discussed, as well as results obtained with different cell types (RG2, TC1-GFP, C57NL/6 peritoneal macrophages, U87-MG) and tissues (RG2-implanted rat brain).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.bpj.2017.11.2006</doi><orcidid>https://orcid.org/0000-0002-8449-0590</orcidid><orcidid>https://orcid.org/0000-0003-4622-2218</orcidid><orcidid>https://orcid.org/0000-0002-3053-3022</orcidid><orcidid>https://orcid.org/0000-0001-7514-420X</orcidid><orcidid>https://orcid.org/0000-0003-1740-4979</orcidid><orcidid>https://orcid.org/0000-0002-2952-2270</orcidid><orcidid>https://orcid.org/0000-0002-6482-3597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-02, Vol.114 (3), p.361a-361a
issn 0006-3495
1542-0086
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_02025007v1
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Nuclear Experiment
Physics
title A Fluorescent Nanoprobe for the Detection of in Situ Temperature Changes during Hyperthermia Treatment of Tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fluorescent%20Nanoprobe%20for%20the%20Detection%20of%20in%20Situ%20Temperature%20Changes%20during%20Hyperthermia%20Treatment%20of%20Tumors&rft.jtitle=Biophysical%20journal&rft.au=Alphandery,%20Edouard&rft.date=2018-02&rft.volume=114&rft.issue=3&rft.spage=361a&rft.epage=361a&rft.pages=361a-361a&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.11.2006&rft_dat=%3Chal_cross%3Eoai_HAL_in2p3_02025007v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0006349517332381&rfr_iscdi=true