Large-scale retrospective relative spectro-photometric self-calibration in space
We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brigh...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2017-02, Vol.467 (3), p.3677-3698 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3698 |
---|---|
container_issue | 3 |
container_start_page | 3677 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 467 |
creator | Markovič, Katarina Percival, Will J. Scodeggio, Marco Ealet, Anne Wachter, Stefanie Garilli, Bianca Guzzo, Luigi Scaramella, Roberto Maiorano, Elisabetta Amiaux, Jerome |
description | We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one. |
doi_str_mv | 10.1093/mnras/stx283 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_01523497v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_in2p3_01523497v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_in2p3_01523497v13</originalsourceid><addsrcrecordid>eNqVy7sOgjAUBuDGaCJeNh-A3VR64Toao2FgcHBvjqRITaGkJUTfXiS-gNP5_z_fQWhHyYGSjAdNa8EFrn-xlM-QR3kcYZbF8Rx5hPAIpwmlS7Ry7kkICTmLPXQtwD4kdiVo6VvZW-M6WfZq-DYNU5gWa3BXm940o1Gl76Su8Pik7nZEpvVVOzoo5QYtKtBObn93jfaX8-2U4xq06KxqwL6FASXyYyFUyzouCI0YD7NkoPw__QG3I0wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale retrospective relative spectro-photometric self-calibration in space</title><source>Oxford Journals Open Access Collection</source><creator>Markovič, Katarina ; Percival, Will J. ; Scodeggio, Marco ; Ealet, Anne ; Wachter, Stefanie ; Garilli, Bianca ; Guzzo, Luigi ; Scaramella, Roberto ; Maiorano, Elisabetta ; Amiaux, Jerome</creator><creatorcontrib>Markovič, Katarina ; Percival, Will J. ; Scodeggio, Marco ; Ealet, Anne ; Wachter, Stefanie ; Garilli, Bianca ; Guzzo, Luigi ; Scaramella, Roberto ; Maiorano, Elisabetta ; Amiaux, Jerome</creatorcontrib><description>We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx283</identifier><language>eng</language><publisher>Oxford University Press (OUP): Policy P - Oxford Open Option A</publisher><subject>Astrophysics ; Cosmology and Extra-Galactic Astrophysics ; Instrumentation and Methods for Astrophysic ; Sciences of the Universe</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-02, Vol.467 (3), p.3677-3698</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-01523497$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Markovič, Katarina</creatorcontrib><creatorcontrib>Percival, Will J.</creatorcontrib><creatorcontrib>Scodeggio, Marco</creatorcontrib><creatorcontrib>Ealet, Anne</creatorcontrib><creatorcontrib>Wachter, Stefanie</creatorcontrib><creatorcontrib>Garilli, Bianca</creatorcontrib><creatorcontrib>Guzzo, Luigi</creatorcontrib><creatorcontrib>Scaramella, Roberto</creatorcontrib><creatorcontrib>Maiorano, Elisabetta</creatorcontrib><creatorcontrib>Amiaux, Jerome</creatorcontrib><title>Large-scale retrospective relative spectro-photometric self-calibration in space</title><title>Monthly notices of the Royal Astronomical Society</title><description>We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.</description><subject>Astrophysics</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Sciences of the Universe</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVy7sOgjAUBuDGaCJeNh-A3VR64Toao2FgcHBvjqRITaGkJUTfXiS-gNP5_z_fQWhHyYGSjAdNa8EFrn-xlM-QR3kcYZbF8Rx5hPAIpwmlS7Ry7kkICTmLPXQtwD4kdiVo6VvZW-M6WfZq-DYNU5gWa3BXm940o1Gl76Su8Pik7nZEpvVVOzoo5QYtKtBObn93jfaX8-2U4xq06KxqwL6FASXyYyFUyzouCI0YD7NkoPw__QG3I0wA</recordid><startdate>20170203</startdate><enddate>20170203</enddate><creator>Markovič, Katarina</creator><creator>Percival, Will J.</creator><creator>Scodeggio, Marco</creator><creator>Ealet, Anne</creator><creator>Wachter, Stefanie</creator><creator>Garilli, Bianca</creator><creator>Guzzo, Luigi</creator><creator>Scaramella, Roberto</creator><creator>Maiorano, Elisabetta</creator><creator>Amiaux, Jerome</creator><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>1XC</scope></search><sort><creationdate>20170203</creationdate><title>Large-scale retrospective relative spectro-photometric self-calibration in space</title><author>Markovič, Katarina ; Percival, Will J. ; Scodeggio, Marco ; Ealet, Anne ; Wachter, Stefanie ; Garilli, Bianca ; Guzzo, Luigi ; Scaramella, Roberto ; Maiorano, Elisabetta ; Amiaux, Jerome</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_in2p3_01523497v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovič, Katarina</creatorcontrib><creatorcontrib>Percival, Will J.</creatorcontrib><creatorcontrib>Scodeggio, Marco</creatorcontrib><creatorcontrib>Ealet, Anne</creatorcontrib><creatorcontrib>Wachter, Stefanie</creatorcontrib><creatorcontrib>Garilli, Bianca</creatorcontrib><creatorcontrib>Guzzo, Luigi</creatorcontrib><creatorcontrib>Scaramella, Roberto</creatorcontrib><creatorcontrib>Maiorano, Elisabetta</creatorcontrib><creatorcontrib>Amiaux, Jerome</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markovič, Katarina</au><au>Percival, Will J.</au><au>Scodeggio, Marco</au><au>Ealet, Anne</au><au>Wachter, Stefanie</au><au>Garilli, Bianca</au><au>Guzzo, Luigi</au><au>Scaramella, Roberto</au><au>Maiorano, Elisabetta</au><au>Amiaux, Jerome</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale retrospective relative spectro-photometric self-calibration in space</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-02-03</date><risdate>2017</risdate><volume>467</volume><issue>3</issue><spage>3677</spage><epage>3698</epage><pages>3677-3698</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.</abstract><pub>Oxford University Press (OUP): Policy P - Oxford Open Option A</pub><doi>10.1093/mnras/stx283</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2017-02, Vol.467 (3), p.3677-3698 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_01523497v1 |
source | Oxford Journals Open Access Collection |
subjects | Astrophysics Cosmology and Extra-Galactic Astrophysics Instrumentation and Methods for Astrophysic Sciences of the Universe |
title | Large-scale retrospective relative spectro-photometric self-calibration in space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20retrospective%20relative%20spectro-photometric%20self-calibration%20in%20space&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Markovi%C4%8D,%20Katarina&rft.date=2017-02-03&rft.volume=467&rft.issue=3&rft.spage=3677&rft.epage=3698&rft.pages=3677-3698&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx283&rft_dat=%3Chal%3Eoai_HAL_in2p3_01523497v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |