Geophysical muon imaging: feasibility and limits

We study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2010-12, Vol.183 (3), p.1348-1361
Hauptverfasser: Lesparre, N., Gibert, D., Marteau, J., Déclais, Y., Carbone, D., Galichet, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1361
container_issue 3
container_start_page 1348
container_title Geophysical journal international
container_volume 183
creator Lesparre, N.
Gibert, D.
Marteau, J.
Déclais, Y.
Carbone, D.
Galichet, E.
description We study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitations on it are still sorely lacking in the literature. We discuss the main issues that can influence the final result of a geophysical imaging experiment. In particular, with the view of optimizing the signal-to-noise ratio, we address issues concerning (i) the energy spectrum for muons arriving at different zenith angles, (ii) the muon propagation model through matter and (iii) the characteristics of the muon detector (telescope) that we have designed to perform experiments of muon radiography against the harsh environment usually encountered in the active zone of a volcano. We thus identify factors that can induce either static or dynamic effects and that should be taken into account. We also define a feasibility eq. (32) relating the geometrical characteristics of the telescope and the duration of the experiment to the expected density resolution, in turn a function of the geometrical characteristics of the target structure. This relation is especially important to define the applicability domain of muon radiography and it is utilized to test the suitability of the method to investigate the density distribution inside some candidate target structures.
doi_str_mv 10.1111/j.1365-246X.2010.04790.x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_01019332v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849484436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5090-ea3ccbb0599360a093be4b78cf31445177a9951227d755b5ca977ea45cebd2e63</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKffoW8-SGfSJE0j-DBFu8lAZBOGL5e0y7bM9I9Np-u3t7Wy-3Ivueccbn4IeQSPSFu3uxGhIfcDFi5HAW5fMRMSjw4naHBcnKIBljz0OcPLc3Th3A5jwgiLBgjHuii3jTOpsl62L3LPZGpj8s2dt9bKmcRYUzeeyleeNZmp3SU6Wyvr9NV_H6L356fF48SfvcbTx_HMVxxL7GtF0zRJMJeShlhhSRPNEhGla0oY40QIJSUnQSBWgvOEp0oKoRXjqU5WgQ7pEN30uVtloazaq6oGCmVgMp6ByYOSQvtbIikNvkmrvu7VZVV87bWrITMu1daqXBd7BxGTLGKMdrn3vfLHWN0ckwmGDifsoKMGHTXocMIfTjhA_DLtptbv937jan04-lX1CaGggsNk-QHhgsXzcP4Ab_QXsjd4mA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849484436</pqid></control><display><type>article</type><title>Geophysical muon imaging: feasibility and limits</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lesparre, N. ; Gibert, D. ; Marteau, J. ; Déclais, Y. ; Carbone, D. ; Galichet, E.</creator><creatorcontrib>Lesparre, N. ; Gibert, D. ; Marteau, J. ; Déclais, Y. ; Carbone, D. ; Galichet, E.</creatorcontrib><description>We study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitations on it are still sorely lacking in the literature. We discuss the main issues that can influence the final result of a geophysical imaging experiment. In particular, with the view of optimizing the signal-to-noise ratio, we address issues concerning (i) the energy spectrum for muons arriving at different zenith angles, (ii) the muon propagation model through matter and (iii) the characteristics of the muon detector (telescope) that we have designed to perform experiments of muon radiography against the harsh environment usually encountered in the active zone of a volcano. We thus identify factors that can induce either static or dynamic effects and that should be taken into account. We also define a feasibility eq. (32) relating the geometrical characteristics of the telescope and the duration of the experiment to the expected density resolution, in turn a function of the geometrical characteristics of the target structure. This relation is especially important to define the applicability domain of muon radiography and it is utilized to test the suitability of the method to investigate the density distribution inside some candidate target structures.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1111/j.1365-246X.2010.04790.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Density ; Feasibility ; Geophysics ; High Energy Physics - Experiment ; Imaging ; Inverse theory ; Mathematical models ; Muons ; Physics ; Radiography ; Spatial analysis ; Telescopes ; Tomography</subject><ispartof>Geophysical journal international, 2010-12, Vol.183 (3), p.1348-1361</ispartof><rights>2010 The Authors Geophysical Journal International © 2010 RAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5090-ea3ccbb0599360a093be4b78cf31445177a9951227d755b5ca977ea45cebd2e63</citedby><orcidid>0000-0003-4957-4833 ; 0000-0002-7578-9259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-246X.2010.04790.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-246X.2010.04790.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-01019332$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesparre, N.</creatorcontrib><creatorcontrib>Gibert, D.</creatorcontrib><creatorcontrib>Marteau, J.</creatorcontrib><creatorcontrib>Déclais, Y.</creatorcontrib><creatorcontrib>Carbone, D.</creatorcontrib><creatorcontrib>Galichet, E.</creatorcontrib><title>Geophysical muon imaging: feasibility and limits</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>We study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitations on it are still sorely lacking in the literature. We discuss the main issues that can influence the final result of a geophysical imaging experiment. In particular, with the view of optimizing the signal-to-noise ratio, we address issues concerning (i) the energy spectrum for muons arriving at different zenith angles, (ii) the muon propagation model through matter and (iii) the characteristics of the muon detector (telescope) that we have designed to perform experiments of muon radiography against the harsh environment usually encountered in the active zone of a volcano. We thus identify factors that can induce either static or dynamic effects and that should be taken into account. We also define a feasibility eq. (32) relating the geometrical characteristics of the telescope and the duration of the experiment to the expected density resolution, in turn a function of the geometrical characteristics of the target structure. This relation is especially important to define the applicability domain of muon radiography and it is utilized to test the suitability of the method to investigate the density distribution inside some candidate target structures.</description><subject>Density</subject><subject>Feasibility</subject><subject>Geophysics</subject><subject>High Energy Physics - Experiment</subject><subject>Imaging</subject><subject>Inverse theory</subject><subject>Mathematical models</subject><subject>Muons</subject><subject>Physics</subject><subject>Radiography</subject><subject>Spatial analysis</subject><subject>Telescopes</subject><subject>Tomography</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKffoW8-SGfSJE0j-DBFu8lAZBOGL5e0y7bM9I9Np-u3t7Wy-3Ivueccbn4IeQSPSFu3uxGhIfcDFi5HAW5fMRMSjw4naHBcnKIBljz0OcPLc3Th3A5jwgiLBgjHuii3jTOpsl62L3LPZGpj8s2dt9bKmcRYUzeeyleeNZmp3SU6Wyvr9NV_H6L356fF48SfvcbTx_HMVxxL7GtF0zRJMJeShlhhSRPNEhGla0oY40QIJSUnQSBWgvOEp0oKoRXjqU5WgQ7pEN30uVtloazaq6oGCmVgMp6ByYOSQvtbIikNvkmrvu7VZVV87bWrITMu1daqXBd7BxGTLGKMdrn3vfLHWN0ckwmGDifsoKMGHTXocMIfTjhA_DLtptbv937jan04-lX1CaGggsNk-QHhgsXzcP4Ab_QXsjd4mA</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Lesparre, N.</creator><creator>Gibert, D.</creator><creator>Marteau, J.</creator><creator>Déclais, Y.</creator><creator>Carbone, D.</creator><creator>Galichet, E.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4957-4833</orcidid><orcidid>https://orcid.org/0000-0002-7578-9259</orcidid></search><sort><creationdate>201012</creationdate><title>Geophysical muon imaging: feasibility and limits</title><author>Lesparre, N. ; Gibert, D. ; Marteau, J. ; Déclais, Y. ; Carbone, D. ; Galichet, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5090-ea3ccbb0599360a093be4b78cf31445177a9951227d755b5ca977ea45cebd2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Density</topic><topic>Feasibility</topic><topic>Geophysics</topic><topic>High Energy Physics - Experiment</topic><topic>Imaging</topic><topic>Inverse theory</topic><topic>Mathematical models</topic><topic>Muons</topic><topic>Physics</topic><topic>Radiography</topic><topic>Spatial analysis</topic><topic>Telescopes</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesparre, N.</creatorcontrib><creatorcontrib>Gibert, D.</creatorcontrib><creatorcontrib>Marteau, J.</creatorcontrib><creatorcontrib>Déclais, Y.</creatorcontrib><creatorcontrib>Carbone, D.</creatorcontrib><creatorcontrib>Galichet, E.</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesparre, N.</au><au>Gibert, D.</au><au>Marteau, J.</au><au>Déclais, Y.</au><au>Carbone, D.</au><au>Galichet, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geophysical muon imaging: feasibility and limits</atitle><jtitle>Geophysical journal international</jtitle><addtitle>Geophys. J. Int</addtitle><date>2010-12</date><risdate>2010</risdate><volume>183</volume><issue>3</issue><spage>1348</spage><epage>1361</epage><pages>1348-1361</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>We study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitations on it are still sorely lacking in the literature. We discuss the main issues that can influence the final result of a geophysical imaging experiment. In particular, with the view of optimizing the signal-to-noise ratio, we address issues concerning (i) the energy spectrum for muons arriving at different zenith angles, (ii) the muon propagation model through matter and (iii) the characteristics of the muon detector (telescope) that we have designed to perform experiments of muon radiography against the harsh environment usually encountered in the active zone of a volcano. We thus identify factors that can induce either static or dynamic effects and that should be taken into account. We also define a feasibility eq. (32) relating the geometrical characteristics of the telescope and the duration of the experiment to the expected density resolution, in turn a function of the geometrical characteristics of the target structure. This relation is especially important to define the applicability domain of muon radiography and it is utilized to test the suitability of the method to investigate the density distribution inside some candidate target structures.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-246X.2010.04790.x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4957-4833</orcidid><orcidid>https://orcid.org/0000-0002-7578-9259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2010-12, Vol.183 (3), p.1348-1361
issn 0956-540X
1365-246X
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_01019332v1
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete
subjects Density
Feasibility
Geophysics
High Energy Physics - Experiment
Imaging
Inverse theory
Mathematical models
Muons
Physics
Radiography
Spatial analysis
Telescopes
Tomography
title Geophysical muon imaging: feasibility and limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geophysical%20muon%20imaging:%20feasibility%20and%20limits&rft.jtitle=Geophysical%20journal%20international&rft.au=Lesparre,%20N.&rft.date=2010-12&rft.volume=183&rft.issue=3&rft.spage=1348&rft.epage=1361&rft.pages=1348-1361&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1111/j.1365-246X.2010.04790.x&rft_dat=%3Cproquest_hal_p%3E849484436%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849484436&rft_id=info:pmid/&rfr_iscdi=true