Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems

We explore the connections between the description of interacting particles systems in terms of fractional exclusion statistics (FES) and other many-body methods used for the same purpose. We consider a system of particles with generic, particle-particle interaction in the quasi-classical limit and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013, Vol.88
Hauptverfasser: Anghel, D.V., Nemnes, G.A., Gulminelli, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 88
creator Anghel, D.V.
Nemnes, G.A.
Gulminelli, F.
description We explore the connections between the description of interacting particles systems in terms of fractional exclusion statistics (FES) and other many-body methods used for the same purpose. We consider a system of particles with generic, particle-particle interaction in the quasi-classical limit and in the mean-field approximation. We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal", in the sense that the quasiparticle energies do not depend on the other quasiparticle levels populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that this FES formalism is equivalent to the semi-classical or Thomas Fermi (TF) limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semi-classical ideal gas description of the interacting particle gas in a generic external potential and in any number of dimensions.
doi_str_mv 10.1103/PhysRevE.88.042150
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00839915v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_in2p3_00839915v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_in2p3_00839915v13</originalsourceid><addsrcrecordid>eNqVi0FOwzAQRS0EEoVyAVazRwl2XNNkiVCqLlggxN6aplNicJzgcQO5PQFxAaQv_bd4T4hrJXOlpL59aid-prHOyzKXq0IZeSIWyhiZFXp9d_rDusr02phzccH8JqUudLlaiPf64-hG9BQagh2lT6IAh4hNcn1AD_TV-CPPDJwwOU6uYcCwhw3FzoF3c76H1FIfJ3BhXqLfOrzCgHHWPQFPnKjjpTg7oGe6-vtLcbOpXx62WYveDtF1GCfbo7Pb-0frQjFoK2Wpq0qZUen_2d87HFdM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems</title><source>American Physical Society Journals</source><creator>Anghel, D.V. ; Nemnes, G.A. ; Gulminelli, F.</creator><creatorcontrib>Anghel, D.V. ; Nemnes, G.A. ; Gulminelli, F.</creatorcontrib><description>We explore the connections between the description of interacting particles systems in terms of fractional exclusion statistics (FES) and other many-body methods used for the same purpose. We consider a system of particles with generic, particle-particle interaction in the quasi-classical limit and in the mean-field approximation. We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal", in the sense that the quasiparticle energies do not depend on the other quasiparticle levels populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that this FES formalism is equivalent to the semi-classical or Thomas Fermi (TF) limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semi-classical ideal gas description of the interacting particle gas in a generic external potential and in any number of dimensions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.88.042150</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Physics ; Quantum Gases ; Statistical Mechanics</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013, Vol.88</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4354-2849 ; 0000-0003-4354-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.in2p3.fr/in2p3-00839915$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Anghel, D.V.</creatorcontrib><creatorcontrib>Nemnes, G.A.</creatorcontrib><creatorcontrib>Gulminelli, F.</creatorcontrib><title>Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><description>We explore the connections between the description of interacting particles systems in terms of fractional exclusion statistics (FES) and other many-body methods used for the same purpose. We consider a system of particles with generic, particle-particle interaction in the quasi-classical limit and in the mean-field approximation. We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal", in the sense that the quasiparticle energies do not depend on the other quasiparticle levels populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that this FES formalism is equivalent to the semi-classical or Thomas Fermi (TF) limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semi-classical ideal gas description of the interacting particle gas in a generic external potential and in any number of dimensions.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Statistical Mechanics</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVi0FOwzAQRS0EEoVyAVazRwl2XNNkiVCqLlggxN6aplNicJzgcQO5PQFxAaQv_bd4T4hrJXOlpL59aid-prHOyzKXq0IZeSIWyhiZFXp9d_rDusr02phzccH8JqUudLlaiPf64-hG9BQagh2lT6IAh4hNcn1AD_TV-CPPDJwwOU6uYcCwhw3FzoF3c76H1FIfJ3BhXqLfOrzCgHHWPQFPnKjjpTg7oGe6-vtLcbOpXx62WYveDtF1GCfbo7Pb-0frQjFoK2Wpq0qZUen_2d87HFdM</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Anghel, D.V.</creator><creator>Nemnes, G.A.</creator><creator>Gulminelli, F.</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4354-2849</orcidid><orcidid>https://orcid.org/0000-0003-4354-2849</orcidid></search><sort><creationdate>2013</creationdate><title>Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems</title><author>Anghel, D.V. ; Nemnes, G.A. ; Gulminelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_in2p3_00839915v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Statistical Mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Anghel, D.V.</creatorcontrib><creatorcontrib>Nemnes, G.A.</creatorcontrib><creatorcontrib>Gulminelli, F.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anghel, D.V.</au><au>Nemnes, G.A.</au><au>Gulminelli, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><date>2013</date><risdate>2013</risdate><volume>88</volume><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We explore the connections between the description of interacting particles systems in terms of fractional exclusion statistics (FES) and other many-body methods used for the same purpose. We consider a system of particles with generic, particle-particle interaction in the quasi-classical limit and in the mean-field approximation. We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal", in the sense that the quasiparticle energies do not depend on the other quasiparticle levels populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that this FES formalism is equivalent to the semi-classical or Thomas Fermi (TF) limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semi-classical ideal gas description of the interacting particle gas in a generic external potential and in any number of dimensions.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevE.88.042150</doi><orcidid>https://orcid.org/0000-0003-4354-2849</orcidid><orcidid>https://orcid.org/0000-0003-4354-2849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2013, Vol.88
issn 1539-3755
1550-2376
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_00839915v1
source American Physical Society Journals
subjects Condensed Matter
Physics
Quantum Gases
Statistical Mechanics
title Equivalence between fractional exclusion statistics and Fermi liquid theory in interacting particle systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20between%20fractional%20exclusion%20statistics%20and%20Fermi%20liquid%20theory%20in%20interacting%20particle%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Anghel,%20D.V.&rft.date=2013&rft.volume=88&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.88.042150&rft_dat=%3Chal%3Eoai_HAL_in2p3_00839915v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true