Helium interaction with vacancy-type defects created in silicon carbide single crystal
Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implante...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2013-05, Vol.436 (1-3), p.150-157 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1-3 |
container_start_page | 150 |
container_title | Journal of nuclear materials |
container_volume | 436 |
creator | Linez, F. Gilabert, E. Debelle, A. Desgardin, P. Barthe, M.-F. |
description | Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50keV-He ions at 2×1014 and 1015 cm−2 and successively annealed at various temperatures from 150 to 1400°C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400°C for both fluences, (2) at 850°C for the low fluence and 950°C for the high one, (3) at 950°C for the low fluence and 1050°C for the high one and (4) at 1300°C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes. |
doi_str_mv | 10.1016/j.jnucmat.2013.01.288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00781931v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311513002961</els_id><sourcerecordid>1531038959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c992ed8ae1644b48d7cf535e6635fefc9f650ea5404f712db3a6bfae8b1f55893</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMoOK7-BKEvgiDdVuWjO32SZVFHGNiLeg3pdMXN0NM9JplZ5t-bYYa9rqei4HmrinoYe4_QIGD7edts54Pb2dxwQNEANlzrF2yFuhO11BxeshUA57VAVK_Zm5S2AKB6UCv2e01TOOyqMGeK1uWwzNVjyA_V0To7u1OdT3uqRvLkcqpcJJtpLHSVwhRcgZ2NQxip9POfiQpxStlOb9krb6dE7671hv369vXn3bre3H__cXe7qZ3sZK5d33MatSVspRykHjvnlVDUtkJ58q73rQKySoL0HfJxELYdvCU9oFdK9-KGfbrMfbCT2cews_FkFhvM-nZjwsz3wgB0GnuBRyz0xwu9j8vfA6VsdiE5miY703JIBtuei1ZIaP8D7VBJ1Sn-PKoEgtC9Op-rLqiLS0qR_NPNCObs0mzN1aU5uzSAprgsuQ_XFTY5O_lY1IT0FOYdl7wXZ-7LhaPy82OgaJILNDsaQywCzbiEZzb9A7gxtqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531038959</pqid></control><display><type>article</type><title>Helium interaction with vacancy-type defects created in silicon carbide single crystal</title><source>Access via ScienceDirect (Elsevier)</source><creator>Linez, F. ; Gilabert, E. ; Debelle, A. ; Desgardin, P. ; Barthe, M.-F.</creator><creatorcontrib>Linez, F. ; Gilabert, E. ; Debelle, A. ; Desgardin, P. ; Barthe, M.-F.</creatorcontrib><description>Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50keV-He ions at 2×1014 and 1015 cm−2 and successively annealed at various temperatures from 150 to 1400°C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400°C for both fluences, (2) at 850°C for the low fluence and 950°C for the high one, (3) at 950°C for the low fluence and 1050°C for the high one and (4) at 1300°C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2013.01.288</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annealing ; Applied sciences ; Condensed Matter ; Controled nuclear fusion plants ; Crystal defects ; Energy ; Energy. Thermal use of fuels ; Evolution ; Exact sciences and technology ; Fission nuclear power plants ; Fluence ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Lattice vacancies ; Materials Science ; Nuclear fuels ; Physics ; Positron annihilation spectroscopy ; Silicon carbide ; Single crystals</subject><ispartof>Journal of nuclear materials, 2013-05, Vol.436 (1-3), p.150-157</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c992ed8ae1644b48d7cf535e6635fefc9f650ea5404f712db3a6bfae8b1f55893</citedby><cites>FETCH-LOGICAL-c474t-c992ed8ae1644b48d7cf535e6635fefc9f650ea5404f712db3a6bfae8b1f55893</cites><orcidid>0000-0001-6563-2728 ; 0000-0002-0170-9498 ; 0000-0003-0692-8718 ; 0000-0003-1245-554X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2013.01.288$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27242938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.in2p3.fr/in2p3-00781931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Linez, F.</creatorcontrib><creatorcontrib>Gilabert, E.</creatorcontrib><creatorcontrib>Debelle, A.</creatorcontrib><creatorcontrib>Desgardin, P.</creatorcontrib><creatorcontrib>Barthe, M.-F.</creatorcontrib><title>Helium interaction with vacancy-type defects created in silicon carbide single crystal</title><title>Journal of nuclear materials</title><description>Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50keV-He ions at 2×1014 and 1015 cm−2 and successively annealed at various temperatures from 150 to 1400°C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400°C for both fluences, (2) at 850°C for the low fluence and 950°C for the high one, (3) at 950°C for the low fluence and 1050°C for the high one and (4) at 1300°C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Controled nuclear fusion plants</subject><subject>Crystal defects</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fluence</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Nuclear fuels</subject><subject>Physics</subject><subject>Positron annihilation spectroscopy</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMoOK7-BKEvgiDdVuWjO32SZVFHGNiLeg3pdMXN0NM9JplZ5t-bYYa9rqei4HmrinoYe4_QIGD7edts54Pb2dxwQNEANlzrF2yFuhO11BxeshUA57VAVK_Zm5S2AKB6UCv2e01TOOyqMGeK1uWwzNVjyA_V0To7u1OdT3uqRvLkcqpcJJtpLHSVwhRcgZ2NQxip9POfiQpxStlOb9krb6dE7671hv369vXn3bre3H__cXe7qZ3sZK5d33MatSVspRykHjvnlVDUtkJ58q73rQKySoL0HfJxELYdvCU9oFdK9-KGfbrMfbCT2cews_FkFhvM-nZjwsz3wgB0GnuBRyz0xwu9j8vfA6VsdiE5miY703JIBtuei1ZIaP8D7VBJ1Sn-PKoEgtC9Op-rLqiLS0qR_NPNCObs0mzN1aU5uzSAprgsuQ_XFTY5O_lY1IT0FOYdl7wXZ-7LhaPy82OgaJILNDsaQywCzbiEZzb9A7gxtqo</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Linez, F.</creator><creator>Gilabert, E.</creator><creator>Debelle, A.</creator><creator>Desgardin, P.</creator><creator>Barthe, M.-F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7QQ</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6563-2728</orcidid><orcidid>https://orcid.org/0000-0002-0170-9498</orcidid><orcidid>https://orcid.org/0000-0003-0692-8718</orcidid><orcidid>https://orcid.org/0000-0003-1245-554X</orcidid></search><sort><creationdate>20130501</creationdate><title>Helium interaction with vacancy-type defects created in silicon carbide single crystal</title><author>Linez, F. ; Gilabert, E. ; Debelle, A. ; Desgardin, P. ; Barthe, M.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c992ed8ae1644b48d7cf535e6635fefc9f650ea5404f712db3a6bfae8b1f55893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Controled nuclear fusion plants</topic><topic>Crystal defects</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fluence</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Nuclear fuels</topic><topic>Physics</topic><topic>Positron annihilation spectroscopy</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linez, F.</creatorcontrib><creatorcontrib>Gilabert, E.</creatorcontrib><creatorcontrib>Debelle, A.</creatorcontrib><creatorcontrib>Desgardin, P.</creatorcontrib><creatorcontrib>Barthe, M.-F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linez, F.</au><au>Gilabert, E.</au><au>Debelle, A.</au><au>Desgardin, P.</au><au>Barthe, M.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helium interaction with vacancy-type defects created in silicon carbide single crystal</atitle><jtitle>Journal of nuclear materials</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>436</volume><issue>1-3</issue><spage>150</spage><epage>157</epage><pages>150-157</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50keV-He ions at 2×1014 and 1015 cm−2 and successively annealed at various temperatures from 150 to 1400°C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400°C for both fluences, (2) at 850°C for the low fluence and 950°C for the high one, (3) at 950°C for the low fluence and 1050°C for the high one and (4) at 1300°C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2013.01.288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6563-2728</orcidid><orcidid>https://orcid.org/0000-0002-0170-9498</orcidid><orcidid>https://orcid.org/0000-0003-0692-8718</orcidid><orcidid>https://orcid.org/0000-0003-1245-554X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2013-05, Vol.436 (1-3), p.150-157 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_00781931v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Annealing Applied sciences Condensed Matter Controled nuclear fusion plants Crystal defects Energy Energy. Thermal use of fuels Evolution Exact sciences and technology Fission nuclear power plants Fluence Fuels Installations for energy generation and conversion: thermal and electrical energy Lattice vacancies Materials Science Nuclear fuels Physics Positron annihilation spectroscopy Silicon carbide Single crystals |
title | Helium interaction with vacancy-type defects created in silicon carbide single crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helium%20interaction%20with%20vacancy-type%20defects%20created%20in%20silicon%20carbide%20single%20crystal&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Linez,%20F.&rft.date=2013-05-01&rft.volume=436&rft.issue=1-3&rft.spage=150&rft.epage=157&rft.pages=150-157&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2013.01.288&rft_dat=%3Cproquest_hal_p%3E1531038959%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531038959&rft_id=info:pmid/&rft_els_id=S0022311513002961&rfr_iscdi=true |