Macro-microscopic mass formulae and nuclear mass predictions
Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. A 2010-12, Vol.847 (1), p.24-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 24 |
container_title | Nuclear physics. A |
container_volume | 847 |
creator | Royer, G. Guilbaud, M. Onillon, A. |
description | Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess
I
=
(
N
−
Z
)
/
A
. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003)
[1]). The Coulomb diffuseness correction
Z
2
/
A
term or the charge exchange correction
Z
4
/
3
/
A
1
/
3
term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius (
r
0
=
1.22
–
1.24
fm
) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei. |
doi_str_mv | 10.1016/j.nuclphysa.2010.06.014 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00523244v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375947410006020</els_id><sourcerecordid>S0375947410006020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4G9y67TjabTQNeSlErrHjRc5hNsjRlv0jaQv-9WVZ6dQ4zMPPeG94j5JFCRoGWz_usP-p23J0DZjnELZQZ0OKKLOhKsJRyXlyTBTDBU1mI4pbchbCHWCXAgrx8ovZD2rnYgx5Gp5MOQ0iawXfHFm2CvUmmBxb9fBm9NU4f3NCHe3LTYBvsw99ckp-31-_NNq2-3j826yrVBcAhRQq10bkRaKishZBMIjfcilJbnYOW0kqmOeUib1DUWNaSNaWpBSBfgaBsSZ5m3R22avSuQ39WAzq1XVfK9fnIFADPWV4UpwktZvRkKXjbXCgU1BSZ2qtLZGqKTEGpYmSRuZ6ZNpo5OetV0M72Ohr2Vh-UGdy_Gr-cgnlG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Macro-microscopic mass formulae and nuclear mass predictions</title><source>Elsevier ScienceDirect Journals</source><creator>Royer, G. ; Guilbaud, M. ; Onillon, A.</creator><creatorcontrib>Royer, G. ; Guilbaud, M. ; Onillon, A.</creatorcontrib><description>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess
I
=
(
N
−
Z
)
/
A
. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003)
[1]). The Coulomb diffuseness correction
Z
2
/
A
term or the charge exchange correction
Z
4
/
3
/
A
1
/
3
term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius (
r
0
=
1.22
–
1.24
fm
) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</description><identifier>ISSN: 0375-9474</identifier><identifier>EISSN: 1873-1554</identifier><identifier>DOI: 10.1016/j.nuclphysa.2010.06.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Curvature energy ; Liquid drop model ; Mass formula ; Nuclear Experiment ; Physics ; Wigner term</subject><ispartof>Nuclear physics. A, 2010-12, Vol.847 (1), p.24-41</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</citedby><cites>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</cites><orcidid>0000-0001-5990-482X ; 0000-0001-6870-1661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375947410006020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00523244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Royer, G.</creatorcontrib><creatorcontrib>Guilbaud, M.</creatorcontrib><creatorcontrib>Onillon, A.</creatorcontrib><title>Macro-microscopic mass formulae and nuclear mass predictions</title><title>Nuclear physics. A</title><description>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess
I
=
(
N
−
Z
)
/
A
. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003)
[1]). The Coulomb diffuseness correction
Z
2
/
A
term or the charge exchange correction
Z
4
/
3
/
A
1
/
3
term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius (
r
0
=
1.22
–
1.24
fm
) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</description><subject>Curvature energy</subject><subject>Liquid drop model</subject><subject>Mass formula</subject><subject>Nuclear Experiment</subject><subject>Physics</subject><subject>Wigner term</subject><issn>0375-9474</issn><issn>1873-1554</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4G9y67TjabTQNeSlErrHjRc5hNsjRlv0jaQv-9WVZ6dQ4zMPPeG94j5JFCRoGWz_usP-p23J0DZjnELZQZ0OKKLOhKsJRyXlyTBTDBU1mI4pbchbCHWCXAgrx8ovZD2rnYgx5Gp5MOQ0iawXfHFm2CvUmmBxb9fBm9NU4f3NCHe3LTYBvsw99ckp-31-_NNq2-3j826yrVBcAhRQq10bkRaKishZBMIjfcilJbnYOW0kqmOeUib1DUWNaSNaWpBSBfgaBsSZ5m3R22avSuQ39WAzq1XVfK9fnIFADPWV4UpwktZvRkKXjbXCgU1BSZ2qtLZGqKTEGpYmSRuZ6ZNpo5OetV0M72Ohr2Vh-UGdy_Gr-cgnlG</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Royer, G.</creator><creator>Guilbaud, M.</creator><creator>Onillon, A.</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5990-482X</orcidid><orcidid>https://orcid.org/0000-0001-6870-1661</orcidid></search><sort><creationdate>20101201</creationdate><title>Macro-microscopic mass formulae and nuclear mass predictions</title><author>Royer, G. ; Guilbaud, M. ; Onillon, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Curvature energy</topic><topic>Liquid drop model</topic><topic>Mass formula</topic><topic>Nuclear Experiment</topic><topic>Physics</topic><topic>Wigner term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royer, G.</creatorcontrib><creatorcontrib>Guilbaud, M.</creatorcontrib><creatorcontrib>Onillon, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear physics. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royer, G.</au><au>Guilbaud, M.</au><au>Onillon, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro-microscopic mass formulae and nuclear mass predictions</atitle><jtitle>Nuclear physics. A</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>847</volume><issue>1</issue><spage>24</spage><epage>41</epage><pages>24-41</pages><issn>0375-9474</issn><eissn>1873-1554</eissn><abstract>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess
I
=
(
N
−
Z
)
/
A
. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003)
[1]). The Coulomb diffuseness correction
Z
2
/
A
term or the charge exchange correction
Z
4
/
3
/
A
1
/
3
term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius (
r
0
=
1.22
–
1.24
fm
) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysa.2010.06.014</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5990-482X</orcidid><orcidid>https://orcid.org/0000-0001-6870-1661</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9474 |
ispartof | Nuclear physics. A, 2010-12, Vol.847 (1), p.24-41 |
issn | 0375-9474 1873-1554 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_00523244v1 |
source | Elsevier ScienceDirect Journals |
subjects | Curvature energy Liquid drop model Mass formula Nuclear Experiment Physics Wigner term |
title | Macro-microscopic mass formulae and nuclear mass predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro-microscopic%20mass%20formulae%20and%20nuclear%20mass%20predictions&rft.jtitle=Nuclear%20physics.%20A&rft.au=Royer,%20G.&rft.date=2010-12-01&rft.volume=847&rft.issue=1&rft.spage=24&rft.epage=41&rft.pages=24-41&rft.issn=0375-9474&rft.eissn=1873-1554&rft_id=info:doi/10.1016/j.nuclphysa.2010.06.014&rft_dat=%3Celsevier_hal_p%3ES0375947410006020%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0375947410006020&rfr_iscdi=true |