Macro-microscopic mass formulae and nuclear mass predictions

Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. A 2010-12, Vol.847 (1), p.24-41
Hauptverfasser: Royer, G., Guilbaud, M., Onillon, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 24
container_title Nuclear physics. A
container_volume 847
creator Royer, G.
Guilbaud, M.
Onillon, A.
description Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I = ( N − Z ) / A . Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003) [1]). The Coulomb diffuseness correction Z 2 / A term or the charge exchange correction Z 4 / 3 / A 1 / 3 term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius ( r 0 = 1.22 – 1.24 fm ) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.
doi_str_mv 10.1016/j.nuclphysa.2010.06.014
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00523244v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375947410006020</els_id><sourcerecordid>S0375947410006020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4G9y67TjabTQNeSlErrHjRc5hNsjRlv0jaQv-9WVZ6dQ4zMPPeG94j5JFCRoGWz_usP-p23J0DZjnELZQZ0OKKLOhKsJRyXlyTBTDBU1mI4pbchbCHWCXAgrx8ovZD2rnYgx5Gp5MOQ0iawXfHFm2CvUmmBxb9fBm9NU4f3NCHe3LTYBvsw99ckp-31-_NNq2-3j826yrVBcAhRQq10bkRaKishZBMIjfcilJbnYOW0kqmOeUib1DUWNaSNaWpBSBfgaBsSZ5m3R22avSuQ39WAzq1XVfK9fnIFADPWV4UpwktZvRkKXjbXCgU1BSZ2qtLZGqKTEGpYmSRuZ6ZNpo5OetV0M72Ohr2Vh-UGdy_Gr-cgnlG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Macro-microscopic mass formulae and nuclear mass predictions</title><source>Elsevier ScienceDirect Journals</source><creator>Royer, G. ; Guilbaud, M. ; Onillon, A.</creator><creatorcontrib>Royer, G. ; Guilbaud, M. ; Onillon, A.</creatorcontrib><description>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I = ( N − Z ) / A . Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003) [1]). The Coulomb diffuseness correction Z 2 / A term or the charge exchange correction Z 4 / 3 / A 1 / 3 term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius ( r 0 = 1.22 – 1.24 fm ) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</description><identifier>ISSN: 0375-9474</identifier><identifier>EISSN: 1873-1554</identifier><identifier>DOI: 10.1016/j.nuclphysa.2010.06.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Curvature energy ; Liquid drop model ; Mass formula ; Nuclear Experiment ; Physics ; Wigner term</subject><ispartof>Nuclear physics. A, 2010-12, Vol.847 (1), p.24-41</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</citedby><cites>FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</cites><orcidid>0000-0001-5990-482X ; 0000-0001-6870-1661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375947410006020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00523244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Royer, G.</creatorcontrib><creatorcontrib>Guilbaud, M.</creatorcontrib><creatorcontrib>Onillon, A.</creatorcontrib><title>Macro-microscopic mass formulae and nuclear mass predictions</title><title>Nuclear physics. A</title><description>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I = ( N − Z ) / A . Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003) [1]). The Coulomb diffuseness correction Z 2 / A term or the charge exchange correction Z 4 / 3 / A 1 / 3 term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius ( r 0 = 1.22 – 1.24 fm ) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</description><subject>Curvature energy</subject><subject>Liquid drop model</subject><subject>Mass formula</subject><subject>Nuclear Experiment</subject><subject>Physics</subject><subject>Wigner term</subject><issn>0375-9474</issn><issn>1873-1554</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4G9y67TjabTQNeSlErrHjRc5hNsjRlv0jaQv-9WVZ6dQ4zMPPeG94j5JFCRoGWz_usP-p23J0DZjnELZQZ0OKKLOhKsJRyXlyTBTDBU1mI4pbchbCHWCXAgrx8ovZD2rnYgx5Gp5MOQ0iawXfHFm2CvUmmBxb9fBm9NU4f3NCHe3LTYBvsw99ckp-31-_NNq2-3j826yrVBcAhRQq10bkRaKishZBMIjfcilJbnYOW0kqmOeUib1DUWNaSNaWpBSBfgaBsSZ5m3R22avSuQ39WAzq1XVfK9fnIFADPWV4UpwktZvRkKXjbXCgU1BSZ2qtLZGqKTEGpYmSRuZ6ZNpo5OetV0M72Ohr2Vh-UGdy_Gr-cgnlG</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Royer, G.</creator><creator>Guilbaud, M.</creator><creator>Onillon, A.</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5990-482X</orcidid><orcidid>https://orcid.org/0000-0001-6870-1661</orcidid></search><sort><creationdate>20101201</creationdate><title>Macro-microscopic mass formulae and nuclear mass predictions</title><author>Royer, G. ; Guilbaud, M. ; Onillon, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a10bdc2d7ad19b77939a5d5e76cec20c99e93c51572fa7ba6b93f6db70a580713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Curvature energy</topic><topic>Liquid drop model</topic><topic>Mass formula</topic><topic>Nuclear Experiment</topic><topic>Physics</topic><topic>Wigner term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royer, G.</creatorcontrib><creatorcontrib>Guilbaud, M.</creatorcontrib><creatorcontrib>Onillon, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear physics. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royer, G.</au><au>Guilbaud, M.</au><au>Onillon, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro-microscopic mass formulae and nuclear mass predictions</atitle><jtitle>Nuclear physics. A</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>847</volume><issue>1</issue><spage>24</spage><epage>41</epage><pages>24-41</pages><issn>0375-9474</issn><eissn>1873-1554</eissn><abstract>Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas–Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I = ( N − Z ) / A . Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003) [1]). The Coulomb diffuseness correction Z 2 / A term or the charge exchange correction Z 4 / 3 / A 1 / 3 term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17–18 MeV. A large equivalent rms radius ( r 0 = 1.22 – 1.24 fm ) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysa.2010.06.014</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5990-482X</orcidid><orcidid>https://orcid.org/0000-0001-6870-1661</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9474
ispartof Nuclear physics. A, 2010-12, Vol.847 (1), p.24-41
issn 0375-9474
1873-1554
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_00523244v1
source Elsevier ScienceDirect Journals
subjects Curvature energy
Liquid drop model
Mass formula
Nuclear Experiment
Physics
Wigner term
title Macro-microscopic mass formulae and nuclear mass predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro-microscopic%20mass%20formulae%20and%20nuclear%20mass%20predictions&rft.jtitle=Nuclear%20physics.%20A&rft.au=Royer,%20G.&rft.date=2010-12-01&rft.volume=847&rft.issue=1&rft.spage=24&rft.epage=41&rft.pages=24-41&rft.issn=0375-9474&rft.eissn=1873-1554&rft_id=info:doi/10.1016/j.nuclphysa.2010.06.014&rft_dat=%3Celsevier_hal_p%3ES0375947410006020%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0375947410006020&rfr_iscdi=true