SZ and CMB reconstruction using generalized morphological component analysis

In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methodology 2008-07, Vol.5 (4), p.307-317
Hauptverfasser: Bobin, J., Moudden, Y., Starck, J.-L., Fadili, J., Aghanim, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 4
container_start_page 307
container_title Statistical methodology
container_volume 5
creator Bobin, J.
Moudden, Y.
Starck, J.-L.
Fadili, J.
Aghanim, N.
description In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.
doi_str_mv 10.1016/j.stamet.2007.10.003
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00189619v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572312707000627</els_id><sourcerecordid>oai_HAL_in2p3_00189619v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouP75Bh56l9aXpk22F2Fd1BUqHtSLl5Cmr7tZ2qQk3YX109ul4tHTG4aZgfcj5IZCQoHyu20SBtXhkKQAYrQSAHZCZnQu5jEUeXY66lykMaOpOCcXIWwBMiY4m5Hy_StSto6Wrw-RR-1sGPxOD8bZaBeMXUdrtOhVa76xjjrn-41r3dpo1Ubadb2zaIdxQLWHYMIVOWtUG_D6916Sz6fHj-UqLt-eX5aLMtaMFyxuGq6bulI5bTRmqJEroRAg1QpzqpuKMy6UgFRUWY2UIjLQdVrpumiqigO7JLfT7ka1svemU_4gnTJytSilsWnPJACdF5wWezqmsymtvQvBY_NXoSCP_ORWTvzkkd_RHfmNtfuphuMne4NeBm3QaqzNCGqQtTP_D_wAwoh9IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SZ and CMB reconstruction using generalized morphological component analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</creator><creatorcontrib>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</creatorcontrib><description>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</description><identifier>ISSN: 1572-3127</identifier><identifier>EISSN: 1878-0954</identifier><identifier>DOI: 10.1016/j.stamet.2007.10.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Astrophysics ; Blind component separation ; Computer Science ; Cosmic microwave background ; Cosmology and Extra-Galactic Astrophysics ; Morphological component analysis ; Morphological diversity ; Physics ; Sciences of the Universe ; Signal and Image Processing ; Sparse overcomplete representations ; Sparsity ; Sunyaev–Zel’dovich</subject><ispartof>Statistical methodology, 2008-07, Vol.5 (4), p.307-317</ispartof><rights>2007 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</citedby><cites>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stamet.2007.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00189619$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobin, J.</creatorcontrib><creatorcontrib>Moudden, Y.</creatorcontrib><creatorcontrib>Starck, J.-L.</creatorcontrib><creatorcontrib>Fadili, J.</creatorcontrib><creatorcontrib>Aghanim, N.</creatorcontrib><title>SZ and CMB reconstruction using generalized morphological component analysis</title><title>Statistical methodology</title><description>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</description><subject>Astrophysics</subject><subject>Blind component separation</subject><subject>Computer Science</subject><subject>Cosmic microwave background</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>Morphological component analysis</subject><subject>Morphological diversity</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Signal and Image Processing</subject><subject>Sparse overcomplete representations</subject><subject>Sparsity</subject><subject>Sunyaev–Zel’dovich</subject><issn>1572-3127</issn><issn>1878-0954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouP75Bh56l9aXpk22F2Fd1BUqHtSLl5Cmr7tZ2qQk3YX109ul4tHTG4aZgfcj5IZCQoHyu20SBtXhkKQAYrQSAHZCZnQu5jEUeXY66lykMaOpOCcXIWwBMiY4m5Hy_StSto6Wrw-RR-1sGPxOD8bZaBeMXUdrtOhVa76xjjrn-41r3dpo1Ubadb2zaIdxQLWHYMIVOWtUG_D6916Sz6fHj-UqLt-eX5aLMtaMFyxuGq6bulI5bTRmqJEroRAg1QpzqpuKMy6UgFRUWY2UIjLQdVrpumiqigO7JLfT7ka1svemU_4gnTJytSilsWnPJACdF5wWezqmsymtvQvBY_NXoSCP_ORWTvzkkd_RHfmNtfuphuMne4NeBm3QaqzNCGqQtTP_D_wAwoh9IQ</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Bobin, J.</creator><creator>Moudden, Y.</creator><creator>Starck, J.-L.</creator><creator>Fadili, J.</creator><creator>Aghanim, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>200807</creationdate><title>SZ and CMB reconstruction using generalized morphological component analysis</title><author>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astrophysics</topic><topic>Blind component separation</topic><topic>Computer Science</topic><topic>Cosmic microwave background</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>Morphological component analysis</topic><topic>Morphological diversity</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Signal and Image Processing</topic><topic>Sparse overcomplete representations</topic><topic>Sparsity</topic><topic>Sunyaev–Zel’dovich</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobin, J.</creatorcontrib><creatorcontrib>Moudden, Y.</creatorcontrib><creatorcontrib>Starck, J.-L.</creatorcontrib><creatorcontrib>Fadili, J.</creatorcontrib><creatorcontrib>Aghanim, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobin, J.</au><au>Moudden, Y.</au><au>Starck, J.-L.</au><au>Fadili, J.</au><au>Aghanim, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SZ and CMB reconstruction using generalized morphological component analysis</atitle><jtitle>Statistical methodology</jtitle><date>2008-07</date><risdate>2008</risdate><volume>5</volume><issue>4</issue><spage>307</spage><epage>317</epage><pages>307-317</pages><issn>1572-3127</issn><eissn>1878-0954</eissn><abstract>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.stamet.2007.10.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-3127
ispartof Statistical methodology, 2008-07, Vol.5 (4), p.307-317
issn 1572-3127
1878-0954
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_00189619v1
source Access via ScienceDirect (Elsevier)
subjects Astrophysics
Blind component separation
Computer Science
Cosmic microwave background
Cosmology and Extra-Galactic Astrophysics
Morphological component analysis
Morphological diversity
Physics
Sciences of the Universe
Signal and Image Processing
Sparse overcomplete representations
Sparsity
Sunyaev–Zel’dovich
title SZ and CMB reconstruction using generalized morphological component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SZ%20and%20CMB%20reconstruction%20using%20generalized%20morphological%20component%20analysis&rft.jtitle=Statistical%20methodology&rft.au=Bobin,%20J.&rft.date=2008-07&rft.volume=5&rft.issue=4&rft.spage=307&rft.epage=317&rft.pages=307-317&rft.issn=1572-3127&rft.eissn=1878-0954&rft_id=info:doi/10.1016/j.stamet.2007.10.003&rft_dat=%3Chal_cross%3Eoai_HAL_in2p3_00189619v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1572312707000627&rfr_iscdi=true