SZ and CMB reconstruction using generalized morphological component analysis
In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precio...
Gespeichert in:
Veröffentlicht in: | Statistical methodology 2008-07, Vol.5 (4), p.307-317 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 4 |
container_start_page | 307 |
container_title | Statistical methodology |
container_volume | 5 |
creator | Bobin, J. Moudden, Y. Starck, J.-L. Fadili, J. Aghanim, N. |
description | In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian
maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data. |
doi_str_mv | 10.1016/j.stamet.2007.10.003 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00189619v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572312707000627</els_id><sourcerecordid>oai_HAL_in2p3_00189619v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouP75Bh56l9aXpk22F2Fd1BUqHtSLl5Cmr7tZ2qQk3YX109ul4tHTG4aZgfcj5IZCQoHyu20SBtXhkKQAYrQSAHZCZnQu5jEUeXY66lykMaOpOCcXIWwBMiY4m5Hy_StSto6Wrw-RR-1sGPxOD8bZaBeMXUdrtOhVa76xjjrn-41r3dpo1Ubadb2zaIdxQLWHYMIVOWtUG_D6916Sz6fHj-UqLt-eX5aLMtaMFyxuGq6bulI5bTRmqJEroRAg1QpzqpuKMy6UgFRUWY2UIjLQdVrpumiqigO7JLfT7ka1svemU_4gnTJytSilsWnPJACdF5wWezqmsymtvQvBY_NXoSCP_ORWTvzkkd_RHfmNtfuphuMne4NeBm3QaqzNCGqQtTP_D_wAwoh9IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SZ and CMB reconstruction using generalized morphological component analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</creator><creatorcontrib>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</creatorcontrib><description>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian
maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</description><identifier>ISSN: 1572-3127</identifier><identifier>EISSN: 1878-0954</identifier><identifier>DOI: 10.1016/j.stamet.2007.10.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Astrophysics ; Blind component separation ; Computer Science ; Cosmic microwave background ; Cosmology and Extra-Galactic Astrophysics ; Morphological component analysis ; Morphological diversity ; Physics ; Sciences of the Universe ; Signal and Image Processing ; Sparse overcomplete representations ; Sparsity ; Sunyaev–Zel’dovich</subject><ispartof>Statistical methodology, 2008-07, Vol.5 (4), p.307-317</ispartof><rights>2007 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</citedby><cites>FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stamet.2007.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00189619$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobin, J.</creatorcontrib><creatorcontrib>Moudden, Y.</creatorcontrib><creatorcontrib>Starck, J.-L.</creatorcontrib><creatorcontrib>Fadili, J.</creatorcontrib><creatorcontrib>Aghanim, N.</creatorcontrib><title>SZ and CMB reconstruction using generalized morphological component analysis</title><title>Statistical methodology</title><description>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian
maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</description><subject>Astrophysics</subject><subject>Blind component separation</subject><subject>Computer Science</subject><subject>Cosmic microwave background</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>Morphological component analysis</subject><subject>Morphological diversity</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Signal and Image Processing</subject><subject>Sparse overcomplete representations</subject><subject>Sparsity</subject><subject>Sunyaev–Zel’dovich</subject><issn>1572-3127</issn><issn>1878-0954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouP75Bh56l9aXpk22F2Fd1BUqHtSLl5Cmr7tZ2qQk3YX109ul4tHTG4aZgfcj5IZCQoHyu20SBtXhkKQAYrQSAHZCZnQu5jEUeXY66lykMaOpOCcXIWwBMiY4m5Hy_StSto6Wrw-RR-1sGPxOD8bZaBeMXUdrtOhVa76xjjrn-41r3dpo1Ubadb2zaIdxQLWHYMIVOWtUG_D6916Sz6fHj-UqLt-eX5aLMtaMFyxuGq6bulI5bTRmqJEroRAg1QpzqpuKMy6UgFRUWY2UIjLQdVrpumiqigO7JLfT7ka1svemU_4gnTJytSilsWnPJACdF5wWezqmsymtvQvBY_NXoSCP_ORWTvzkkd_RHfmNtfuphuMne4NeBm3QaqzNCGqQtTP_D_wAwoh9IQ</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Bobin, J.</creator><creator>Moudden, Y.</creator><creator>Starck, J.-L.</creator><creator>Fadili, J.</creator><creator>Aghanim, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>200807</creationdate><title>SZ and CMB reconstruction using generalized morphological component analysis</title><author>Bobin, J. ; Moudden, Y. ; Starck, J.-L. ; Fadili, J. ; Aghanim, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-ff6cfdba51fce4ece6a7ae002cae51cfb6367a7027b4de11ee30cd2bcd9fbb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astrophysics</topic><topic>Blind component separation</topic><topic>Computer Science</topic><topic>Cosmic microwave background</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>Morphological component analysis</topic><topic>Morphological diversity</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Signal and Image Processing</topic><topic>Sparse overcomplete representations</topic><topic>Sparsity</topic><topic>Sunyaev–Zel’dovich</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobin, J.</creatorcontrib><creatorcontrib>Moudden, Y.</creatorcontrib><creatorcontrib>Starck, J.-L.</creatorcontrib><creatorcontrib>Fadili, J.</creatorcontrib><creatorcontrib>Aghanim, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobin, J.</au><au>Moudden, Y.</au><au>Starck, J.-L.</au><au>Fadili, J.</au><au>Aghanim, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SZ and CMB reconstruction using generalized morphological component analysis</atitle><jtitle>Statistical methodology</jtitle><date>2008-07</date><risdate>2008</risdate><volume>5</volume><issue>4</issue><spage>307</spage><epage>317</epage><pages>307-317</pages><issn>1572-3127</issn><eissn>1878-0954</eissn><abstract>In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools for studying and understanding the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev–Zel’dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intensive activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian
maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.stamet.2007.10.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-3127 |
ispartof | Statistical methodology, 2008-07, Vol.5 (4), p.307-317 |
issn | 1572-3127 1878-0954 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_00189619v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Astrophysics Blind component separation Computer Science Cosmic microwave background Cosmology and Extra-Galactic Astrophysics Morphological component analysis Morphological diversity Physics Sciences of the Universe Signal and Image Processing Sparse overcomplete representations Sparsity Sunyaev–Zel’dovich |
title | SZ and CMB reconstruction using generalized morphological component analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SZ%20and%20CMB%20reconstruction%20using%20generalized%20morphological%20component%20analysis&rft.jtitle=Statistical%20methodology&rft.au=Bobin,%20J.&rft.date=2008-07&rft.volume=5&rft.issue=4&rft.spage=307&rft.epage=317&rft.pages=307-317&rft.issn=1572-3127&rft.eissn=1878-0954&rft_id=info:doi/10.1016/j.stamet.2007.10.003&rft_dat=%3Chal_cross%3Eoai_HAL_in2p3_00189619v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1572312707000627&rfr_iscdi=true |